Influent and Effluent Data Summary II.

The results of all analyses performed on the WWTP influent and effluent are summarized in tables with monthly and annual averages (and in some cases annual totals) calculated. Graphs of monthly averages are presented.

- A. **Mass Emissions**
- **Discharge Limits** B.
- Influent and Effluent Data Summaries C.
- Influent and Effluent Graphs D.
- Daily Values of selected Parameters E.
- **Toxicity Bioassays** F.
- 6-Year Tables G.

A. Mass Emissions

Mass Emissions of Effluent Using 2010 Monthly Averages

DISCHARGE SPECIFICATIONS from NPDES Permit No. CA0107409/RWQCB Order No. R9-2009-0001 effective on August 1, 2010 with limits on pollutant discharges.

	Benchmarks	2010	2010	
	(mt/yr)	Mass Emissions	Concentration	
Constituent/Property		(mt/yr)		Units
Flow (MGD)			156.7	MGD
Total Suspended Solids	<u>13,995</u>	8,006	37	mg/L
BOD	_	22,503	104	mg/L
Arsenic	0.88	0.19	0.87	ug/L
Cadmium	1.4	0.00	0.00	ug/L
Chromium	14.2	0.39	1.8	ug/L
Copper	26	4.59	21.2	ug/L
Lead	14.2	0.06	0.3	ug/L
Mercury	0.19	0.001	0.0036	ug/L
Nickel	11.3	1.73	8.0	ug/L
Selenium	0.44	0.27	1.23	ug/L
Silver	2.8	0.00	0.00	ug/L
Zinc	18.3	5.41	25	ug/L
Cyanide	1.57	0.43	0.002	mg/L
Residual Chlorine		2.17	0.01	mg/L
Ammonia	8018	6,791	31.3	mg/L
Non-Chor. Phenols	2.57	3.20	14.8	ug/L
Chlorinated Phenols	1.73	0.00	0.0	ug/L
Endosulfan	0.006	0.0002	1	ng/L
Endrin	0.008	0.00	0	ng/L
hexachlorocyclohexanes *(HCH)	0.025	0.0002	1	ng/L
* (all as Lindane, the gamma isomer)				
Acrolein	17.6	0.00	0	ug/L
Antimony	56.6	0.00	0.0	ug/L
Bis(2-chloroethoxy) methane	1.5	0.00	0	ug/L
Bis(2-chloroisopropyl) ether	1.61	0.00	0	ug/L
Chlorobenzene	1.7	0.00	0.0	ug/L
Chromium (III)				
di-n-butyl phthalate	1.33	0.00	0	ug/L
dichlorobenzenes	2.8	0.00	0	ug/L
1,1-dichloroethylene	0.79	0.00	0	ug/L
Diethyl phthalate	6.23	1.51	7	ug/L
Dimethyl phthalate	1.59	0.00	0	ug/L
4,6-dinitro-2-methylphenol	6.8	0.00	0	ug/L
2,4-dinitrophenol	11.9	0.00	0	ug/L
Ethylbenzene	2.04	0.04	0.2	ug/L
Fluoranthene	0.62	0.00	0	ug/L
Hexachlorocyclopentadiene	-	0.00	0	ug/L

	Benchmarks	2010	2010	
	(mt/yr)	Mass Emissions	Concentration	
Constituent/Property	(1111/91)	(mt/yr)	Concenhanon	Units
Nitrobenzene	2.07	0.00	0	ug/L
Thallium	36.8	0.00	0.0	ug/L
Toluene	3.31	0.30	1.4	ug/L
1,1,2,2-tetrachloroethane	1.95	0.00	0	ug/L
Tributyltin	0.001	0.00	0	ug/L
1,1,1-trichloroethane	2.51	0.00	0	ug/L
1,1,2-trichloroethane	1.42	0.00	0	ug/L
Acrylonitrile	5.95	0.00	0	ug/L
Aldrin	0.006	0.00	0	ng/L
Benzene	1.25	0.00	0	ug/L
Benzidine	12.5	0.00	0	ug/L
Beryllium	1.42	0.001	0.003	ug/L
Bis (2-chloroethyl) ether	1.61	0.00	0	ug/L
Bis (2-ethylhexyl) phthalate	2.89	0.00	0.0	ug/L
Carbon Tetrachloride Chlordane	0.79 0.014	0.00	0	ug/L ng/L
Chloroform	2.19	1.08	5	ug/L
DDT	0.043	0.00	0	ng/L
1,4-dichlorobenzene	1.25	0.11	0.5	ug/L
3,3-dichlorobenzidine	4.67	0.00	0.0	ug/L
1,2-dichloroethane	0.79	0.00	0	ug/L
Dichloromethane	13.7	2.25	10.4	ug/L
1,3-dichloropropene	1.42	0.00	0	ug/L
Dieldrin	0.011	0.00	0	ng/L
2,4-dinitrotoluene	1.61	0.00	0	ug/L
1,2-diphenylhydrazine	1.52	0.00	0	ug/L
Halomethanes	5.86	1.17	5.4	ug/L
Heptachlor	0.001	0.00022	1	ng/L
Heptachlor epoxide	0.024	0.00	0	ng/L
Hexachlorobenzene	0.54	0.00	0	ug/L
Hexachlorobutadiene	0.054	0.00	0	ug/L
Hexachloroethane	1.13	0.00	0	ug/L
Isophorone	0.71	0.00	0	ug/L
N-nitrosodimethylamine	0.76	0.00	0	ug/L
N-nitrosodiphenylamine	1.47	0.00	0	ug/L
PAHs PCBs	15.45 0.275	0.00	0	ug/L
TCDD equivalents	0.2/3	0.000000005	0.024	ng/L
Tetrachloroethylene	4	0.00	0.024	pg/L ug/L
Toxaphene	0.068	0.00	0	ng/L
Trichloroethylene	1.56	0.00	0	ug/L
2,4,6-trichlorophenol	0.96	0.00	0	ug/L
Vinyl Chloride	0.4	0.00	0	ug/L

B. Discharge Limits

NPDES Permit No. CA0107409/RWQCB Order No. R9-2009-0001

DISCHARGE SPECIFICATIONS from NPDES Permit No. CA0107409/RWQCB Order No. R9-2009-0001 effective on August 1, 2009 with limits on pollutant discharges.

The discharge of waste through the Point Loma Ocean Outfall containing pollutants in excess of the following effluent limitations are prohibited:

Constituent	Units	6-month Median	30-day Average	7-Day Average	Daily Maximum	Instantaneous Maximum
Biochemical Oxygen Demand BOD ₅ @ 20°C	mg/L	The "Mean Ann emission limit.				There is no mass
Total Suspended Solids ⁸	mg/L lb/day		75 15,000			
pH	pH units		Within the l	limits of 6.0 - 9.	.0 at all times.	
Grease & Oil	mg/L lb/day		25 42,743	40 68,388		75 128,228
Settleable Solids	mL/L		1.0	1.5		3.0
Turbidity	NTU		75	100		225
Acute Toxicity	TUa				6.5	
Arsenic	ug/L	1,000			5,900	16,000
Cadmium	ug/L	210			820	2,100
Chromium ⁹ (Hexavalent)	ug/L	410			1,600	4,100
Copper	ug/L	210			2,100	5,700
Lead	ug/L	410			1,600	4,100
Mercury	ug/L	8.1			33	82
Nickel	ug/L	1,000			4,100	10,000
Selenium	ug/L	3,100			12,000	31,000
Silver	ug/L	110			540	1,000
Zinc	ug/L	2,500			15,000	39,400
Cyanide	mg/L	0.2			0.8	2.1
Total Residual Chlorine(TRC)	mg/L	0.41			1.6	12
Ammonia (expressed as Nitrogen)	mg/L	120			490	1,200
Chronic Toxicity	TUc				205	
Phenolic Compounds (non- chlorinated)	ug/L	6,200			25,000	62,000
Chlorinated Phenolics	ug/L	210			820	2,100
Endosulfan	ng/L	1,800			3,700	5,500
Endrin	ng/L	410			820	1,200
HCH (hexachlorocyclohexanes)	ng/L lb/day	820			1,600	2,500

⁸ Total Suspended Solids (TSS)- The discharger shall achieve a mass emission of TSS of no greater than 15,000 mt/yr; this requirement shall be effective through December 31, 2005. Effective January 1, 2006, the discharger shall achieve a mass emission of TSS of no greater than 13,599 mt/yr. These mass emission requirements shall only apply to TSS discharged from POTWs which are owned and operated by the discharger, and the discharger's wastewater generated in the Metro System service area. These mass emission requirements do not apply to wastewater (and the resulting TSS) generated in Mexico as a result of upset or shutdown and treated at and discharged from the PLMWTP.

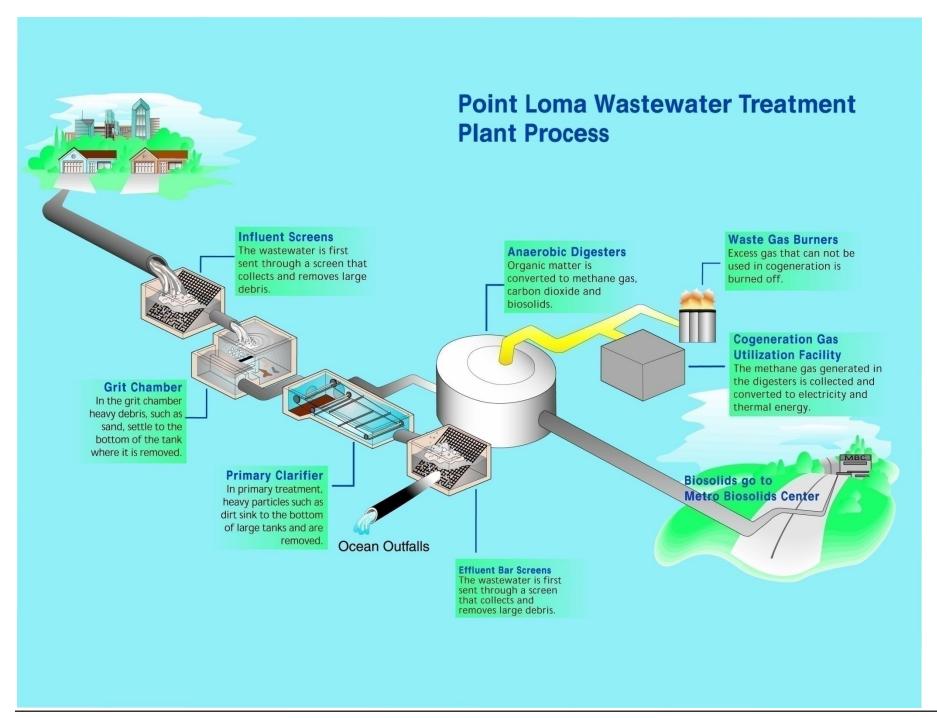
⁹ Hexavalent Chromium limit met as Total Chromium.

LIMITATIONS FOR PROTECTION OF HUMAN HEALTH--NONCARCINOGENS

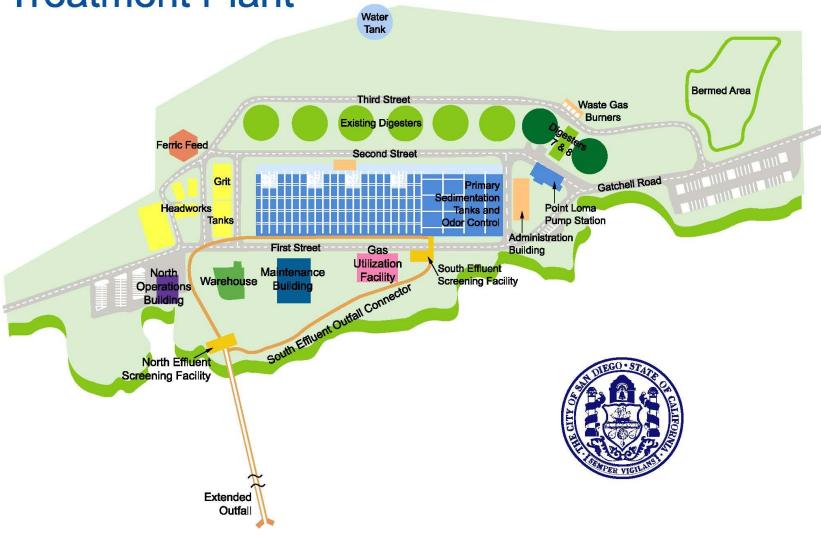
Constituent	Units	Monthly
		Average
		(30-Day)
Acrolein	ug/L	45,000
Antimony	ug/L	250,000
Bis(2-chloroethoxy) methane	ug/L	900
Bis(2-chloroisopropyl) ether	ug/L	250,000
Chlorobenzene	ug/L	120,000
Chromium (III) ¹⁰	ug/L	39,000,000
di-n-butyl phthalate	ug/L	720,000
dichlorobenzenes	ug/L	1,000,000
Diethyl phthalate	ug/L	6,800,000
Dimethyl phthalate	ug/L	170,000,000
4,6-dinitro-2-methylphenol	ug/L	45,000
2,4-dinitrophenol	ug/L	820
Ethylbenzene	ug/L	840,000
Fluoranthene	ug/L	3,100
Hexachlorocyclopentadiene	ug/L	12,000
Nitrobenzene	ug/L	1,000
Thallium	ug/L	400
Toluene	ug/L	17,000,000
Tributyltin	ug/L	0.29
1,1,1-trichloroethane	ug/L	110,000,000

LIMITATIONS FOR PROTECTION OF HUMAN HEALTH—CARCINOGENS

HUMAN HEALTH-	-CAKCII	NOGENS
Constituent	Units	Monthly
		Average
		(30-Day)
Acrylonitrile	ug/L	21
Aldrin	ng/L	4.5
Benzene	ug/L	1,200
Benzidine	ug/L	0.014
Beryllium	ug/L	6.8
Bis(2-chloroethyl)ether	ug/L	9.2
Bis(2-ethylhexyl)phthalate	ug/L	720
Carbon Tetrachloride	ug/L	180
Chlordane	ng/L	4.7
Chloroform	ug/L	27,000
DDT	ng/L	35
1,1,2,2-tetrachloroethane	ug/L	470
1,1-dichloroethylene	ug/L	200
1,1,2-trichloroethane	ug/L	1,900
1,4-dichlorobenzene	ug/L	3,700
3,3-dichlorobenzidine	ug/L	1.7
1,2-dichloroethane	ug/L	5,700
Dichloromethane	ug/L	92,000
1,3-dichloropropene	ug/L	1,800
Dieldrin	ng/L	8.20
2,4-dinitrotoluene	ug/L	530
1,2-diphenylhydrazine	ug/L	33
Halomethanes	ug/L	27,000
Heptachlor	ng/L	10
Hexachlorobenzene	ug/L	0.043
Hexachlorobutadiene	ug/L	2,900
Hexachloroethane	ug/L	510
Isophorone	ug/L	150,000
N-nitrosodimethylamine	ug/L	1,500
N-nitrosodiphenylamine	ug/L	510
PAHs	ug/L	1.80
PCBs	ng/L	3.90
TCDD equivalents	pg/L	0.8
Tetrachloroethylene	ug/L	410
Toxaphene	ng/L	430
Trichloroethylene	ug/L	5,500
Vinyl Chloride	ug/L	7,400


 $^{^{\}rm 10}$ Chromium (III) limit is met by Total Chromium.

C. Influent and Effluent Data Summaries


The results of all analyses performed on the WWTP influent and effluent are summarized in tables with monthly and annual averages (and in some cases annual totals) calculated.

On January 23rd 2010 a calculation of the Systemwide TSS Removals resulted in a negative removal. Shutdown of the blended sludge pumps (BSPS) caused an increased flow at the plant drain. While solids content was expected to be elevated, the values obtained for TSS on January 23rd and 24th of 16,900mg/L and 11,800mg/L, respectively, may not completely reflect internal plant processes.

Also the plant experienced significant rain-induced high flows during December. For example, the flows on December 21, 22 and 23, 2010 were 318.3, 393.9, and 261.2 million gallons, respectively. However, the monthly average flow rate of 181.6 MGD was well below the section III.B. limit. Nor did the peaked flows exceed the peak wet weather design flow of 432 MGD. The frequency of rain events and the high daily flows that resulted from them this month are not typical. The daily flow rates in 2011 have returned to normal rates and flow rates are expected to remain below 75% of designed treatment capacity in the future.

Point Loma Wastewater Treatment Plant

POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL

From 01-JAN-2010 To 31-DEC-2010

Biochemical Oxygen Demand Concentration

		Daily Influent Value	Daily Influent Value	Daily Effluent Value	Daily Effluent Value	Percent Removal BOD
	Flow	(mg/L)	(lbs/Day)	(mg/L)	(lbs/Day)	(%)
	=======================================		=========		========	=========
JANUARY -2010	169.1	287	404754	105	148081	63.4
FEBRUARY -2010	169.6	280	396050	106	149933	62.1
MARCH -2010	163.0	301	409185	104	141380	65.4
APRIL -2010	157.5	305	400633	108	141863	64.6
MAY -2010	150.5	312	391613	106	133048	66.0
JUNE -2010	147.1	300	368044	105	128815	65.0
JULY -2010	145.9	290	352874	105	127765	63.8
AUGUST -2010	145.2	294	356025	105	127152	64.3
SEPTEMBER-2010	144.4	283	340816	104	125247	63.3
OCTOBER -2010	153.2	265	338587	100	127769	62.3
NOVEMBER -2010	152.8	273	347898	102	129984	62.6
DECEMBER -2010	181.6	256	387723	95	143882	62.9
=========	=======================================	========	========	========	========	========
Average	156.7	287	374517	104	135410	63.8

Total Suspended Solids Concentration

	Flow MGD	Daily Influent TSS (mg/L)	Daily Influent VSS (mg/L)	Percent VSS of TSS (%)	Daily Influent Value (lbs/Day)	Daily Effluent TSS (mg/L)	Daily Effluent VSS (mg/L)	Percent VSS of TSS (%)	Daily Effluent Value (lbs/Day)
JANUARY -2010	169.1	284	237	 83.5	400523	 35	26	 74.3	49360
FEBRUARY -2010	169.6	306	260	85.0	432826	36	28	77.8	50921
MARCH -2010	163.0	305	259	84.9	414623	36	28	77.8	48939
APRIL -2010	157.5	323	273	84.5	424277	37	28	75.7	48601
MAY -2010	150.5	343	289	84.3	430523	34	26	76.5	42676
JUNE -2010	147.1	351	293	83.5	430612	39	30	76.9	47846
JULY -2010	145.9	344	288	83.7	418581	36	28	77.8	43805
AUGUST -2010	145.2	336	286	85.1	406885	34	27	79.4	41173
SEPTEMBER-2010	144.4	340	289	85.0	409461	37	29	78.4	44559
OCTOBER -2010	153.2	323	272	84.2	412693	39	30	76.9	49830
NOVEMBER -2010	152.8	314	266	84.7	400147	37	28	75.7	47151
DECEMBER -2010	181.6	305	252	82.6	461936	45	34	75.6	68154
Average	156.7	323	272		420257	37	29		48585

		Percent	Percent
		Removal	Removal
		TSS	VSS
		(%)	(%)
======		========	=======
JANUARY	-2010	87.7	89.0
FEBRUARY	-2010	88.2	89.2
MARCH	-2010	88.2	89.2
APRIL	-2010	88.5	89.7
MAY	-2010	90.1	91.0
JUNE	-2010	88.9	89.8
JULY	-2010	89.5	90.3
AUGUST	-2010	89.9	90.6
SEPTEMBER	R-2010	89.1	90.0
OCTOBER	-2010	87.9	89.0
NOVEMBER	-2010	88.2	89.5
DECEMBER	-2010	85.2	86.5
	=====	========	=======
Average		88.5	89.5

Annual Mass Emissions are calculated from monthly averages of flow and BOD, whereas Monthly Report average mass emissions are calculated from average daily mass emissions.

POINT LOMA WASTEWATER TREATMENT PLANT

Systemwide BOD Removals

Annual 2010

	Pt. Loma	NCWRP	NCWRP	MBC	NCWRP	Total	Pt. Loma	System wide	Pt. Loma	Pt. Loma
	Influent	PS64	Penasquitos	Return	Return	Return	Effluent	Adjusted	Daily	Daily
	Mass	Mass	Mass	Mass	Mass	Mass	Mass	BOD	BOD	BOD
MONTH	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Removals	Removals	Eff Conc.
JAN	400,525	28,763	16,431	4,997	23,701	28,698	145,401	64.8	63.2	105
FEB		•	•	•	•	•	•			106
	396,773	26,356	•	7,035	14,865	•	149,827	63.9	62.1	
MAR	408,013	28,032	17,253	4,739	16,084	20,823	141,227	67.3	65.3	104
APR	400,579	32,030	18,008	5,327	18,309	23,636	141,736	66.7	64.5	108
MAY	391,900	36,821	13,128	7,061	18,774	25,835	133,083	67.9	66.0	106
JUN	368,200	33,960	17,133	8,196	16,047	24,243	128,312	67.4	65.0	105
JUL	352,552	32,530	15,987	5,797	5,069	10,867	127,578	67.2	63.6	105
AUG	355,428	47,465	1,550	4,118	3,124	7,242	127,092	68.0	64.2	105
SEP	341,081	49,099	520	4,284	3,104	7,389	124,810	67.4	63.3	104
OCT	336,609	30,589	16,227	5,051	5,714	10,765	127,760	65.7	62.0	100
NOV	347,831	29,335	14,757	5,719	989	6,708	130,138	66.2	62.5	102
DEC	367,981	27,853	19,677	5,141	18,132	23,273	142,118	63.3	60.9	96
avg	372,289	33,569	13,816	5,622	11,993	17,615	134,924	66.3	63.6	104

Systemwide TSS Removals

	Pt. Loma	NCWRP	NCWRP	MBC	NCWRP	Total	Pt. Loma	System wide	Pt. Loma	Pt. Loma
	Influent	PS64	Penasquitos	Return	Return	Return	Effluent	Adjusted	Daily	Daily
	Mass	Mass	Mass	Mass	Mass	Mass	Mass	TSS	TSS	TSS
MONTH	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions	Removals	Removals	Eff Conc.
10-01	401,666	26,240	24,261	12,290	47,534	59,824	49,745	83.1	87.4	35
10-02	432,188	28,091	21,124	13,651	30,106	43,757	51,599	87.2	88.0	36
10-03	413,016	26,919	22,785	14,029	20,600	34,630	49,520	88.4	88.0	36
10-04	424,166	28,792	20,680	14,545	22,017	36,561	48,003	89.0	88.6	37
10-05	430,775	30,929	17,885	16,084	22,575	38,659	42,813	90.3	90.0	34
10-06	429,838	30,245	24,077	24,670	16,663	41,333	47,686	89.1	88.8	39
10-07	418,496	29,786	22,092	14,127	6,529	20,656	44,352	90.1	89.4	36
10-08	407,074	46,752	1,699	11,204	3,903	15,107	41,026	90.6	89.9	34
10-09	408,975	45,004	923	10,633	6,069	16,702	44,801	89.7	89.0	37
10-10	411,694	29,480	22,071	14,345	14,106	28,451	49,855	88.5	87.9	39
10-11	399,751	27,166	20,182	12,228	1,879	14,107	47,531	89.0	88.1	37
10-12	448,369	26,472	24,901	12,104	19,466	31,570	75,395	85.1	84.4	45
avg	418,834	31,323	18,557	14,159	17,621	31,780	49,361	88.3	88.3	37.1

Annual mass emissions are calculated from monthly averages of flow and TSS, whereas Monthly Report average mass emissions are calculated from average daily mass emissions.

POINT LOMA WASTEWATER TREATMENT PLANT

From 01-JAN-2010 To 31-DEC-2010

Effluent to Ocean Outfall (PLE)

	рН	Settleable Solids (ml/L)	Biochemical Oxygen Demand (mg/L)	Hexane Extractable Material (mg/L)	Temperature (C)	Floating Particulates (mg/L)	Turbidity (NTU)
JANUARY -2010	7.23	0.1	105	9.6	22.9	ND	37
							_
FEBRUARY -2010	7.21	0.2	106	11.2	22.4	ND	36
MARCH -2010	7.17	0.2	104	11.3	23.0	ND	34
APRIL -2010	7.19	0.2	108	11.9	23.8	<1.40	36
MAY -2010	7.20	0.2	106	12.9	24.8	ND	37
JUNE -2010	7.16	0.4	105	14.4	26.0	ND	40
JULY -2010	7.21	0.4	105	12.5	27.0	ND	41
AUGUST -2010	7.24	0.6	105	11.6	27.4	ND	41
SEPTEMBER-2010	7.24	0.5	104	13.5	27.6	ND	40
OCTOBER -2010	7.20	0.4	100	12.4	26.7	ND	39
NOVEMBER -2010	7.23	0.4	102	11.6	25.4	ND	38
DECEMBER -2010	7.22	0.4	95	11.3	23.2	ND	37
=========	========	========	========	========	========	=======================================	=======
Average	7.21	0.3	104	12.0	25.0	0.00	38

Influent to Plant (PLR)

			Biochemical	Hexane			
		Settleable	0xygen	Extractable		Floating	
	рН	Solids	Demand	Material	Temperature	Particulates	Turbidity
		(ml/L)	(mg/L)	(mg/L)	(C)	(mg/L)	(NTU)
	========						========
JANUARY -2010	7.38	15.90	287	43.1	23.0	<1.40	138
FEBRUARY -2010	7.39	14.10	280	39.1	22.4	1.49	140
MARCH -2010	7.36	15.40	301	42.0	23.1	<1.40	136
APRIL -2010	7.35	14.20	305	47.5	23.6	<1.40	136
MAY -2010	7.33	16.00	312	46.1	24.7	<1.40	136
JUNE -2010	7.29	13.90	300	51.1	26.0	<1.40	138
JULY -2010	7.30	14.30	290	46.9	26.9	<1.40	136
AUGUST -2010	7.34	15.80	294	45.8	27.2	<1.40	135
SEPTEMBER-2010	7.34	17.60	283	48.6	27.5	<1.40	134
OCTOBER -2010	7.34	17.40	265	47.0	26.9	<1.40	131
NOVEMBER -2010	7.31	18.20	273	50.3	25.4	ND	134
DECEMBER -2010	7.34	15.10	256	42.7	23.4	<1.40	129
	========						
Average	7.34	15.7	287	45.9	25.0	0.1	135

ND=not detected; NS=not sampled; NA=not analyzed.

POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL SEWAGE Trace Metals

(Limits shown are the 6-Month Median Maximum)

From: 01-JAN-2010 to: 31-DEC-2010

Analyte:		Antimony	Arsenic	Arsenic	BerylliumB		Cadmium	Cadmium
MDL	2.9	2.9	.4	.4	.022	.022	.53	.53
Units	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Source:	PLR	PLE	PLR	PLE	PLR	PLE	PLR	PLE
JANUARY -2010	ND	ND	1.72	0.93	0.069	0.039	ND	ND
FEBRUARY -2010	ND	ND	1.43	0.83	<0.022	ND	ND	ND
MARCH -2010	ND	ND	1.51	0.90	<0.022	<0.022	ND	ND
APRIL -2010	ND	ND	1.38	0.87	0.052	ND	ND	ND
MAY -2010	ND	ND	1.16	0.71	<0.022	ND	ND	ND
JUNE -2010	ND	ND	1.24	0.81	ND	ND	ND	ND
JULY -2010	ND	ND	0.86	0.63	ND	ND	ND	ND
AUGUST -2010	ND	ND	1.37	1.06	<0.022	ND	ND	ND
SEPTEMBER-2010	ND	ND	1.10	0.88	<0.022	ND	ND	ND
OCTOBER -2010	ND	ND	1.15	0.89	ND	ND	ND	ND
NOVEMBER -2010	ND	ND	1.09	0.79	0.028	<0.022	ND	ND
DECEMBER -2010	ND	ND	2.06	1.11	ND	ND	ND	ND
AVERAGE	ND	ND	1.34	0.87	0.012	0.003	======= ND	ND
Analyte:	Chnomium	Chromium	Copper	Copper	Iron	Iron	Lead	Lead
MDL	1.2	1.2	2 copper	2	37	37	2	2
Units	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Source:	PLR	PLE	PLR	PLE	PLR	PLE	PLR	PLE
JANUARY -2010	6.6	1.8	103.0	20.1	6200	2140	3.6	ND
FEBRUARY -2010	8.2	2.4	92.1	19.8	6170	2530	2.7	ND
MARCH -2010	6.7	1.9	101.0	19.4	7600	2640	3.5	ND
APRIL -2010	9.0	2.2	112.0	19.8	7670	2850	4.3	ND
MAY -2010	11.2	3.1	110.0	23.9	7680	2470	4.0	<2.0
JUNE -2010	9.2	1.2	123.0	17.1	8280	2680	3.7	ND
JULY -2010	5.3	1.8	77.6	16.8	5640	2470	2.5	ND
AUGUST -2010	9.2	1.9	130.0	19.0	7180	2190	4.1	ND
SEPTEMBER-2010	6.8	2.2	105.0	20.0	6560	2380	2.9	ND
OCTOBER -2010	9.2	1.6	116.0	30.2	7630	2580	5.9	3.6
NOVEMBER -2010	6.3	<1.2	133.0	25.6	6470	2550	2.9	ND
DECEMBER -2010	7.4	1.6	92.7	22.2	6780	2800	3.7	ND
=========	=======	=======	========	======	========	======	=======	======
AVERAGE	7.9	1.8	108.0	21.2	6988	2523	3.7	0.3

POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL SEWAGE Trace Metals

(Limits shown are the 6-Month Median Maximum)

From: 01-JAN-2010 to: 31-DEC-2010

Analyte:	Nickel	Nickel	Selenium	Selenium	Silver	Silver	Thallium [*]	Thallium
MDL	.53	.53	.28	.28	.4	.4	3.9	3.9
Units	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Source:	PLR	PLE	PLR	PLE	PLR	PLE	PLR	PLE
==========	========	======	=======		========	======	========	======
JANUARY -2010	11.7	7.4	2.30	1.68	0.8	ND	ND	ND
FEBRUARY -2010	16.9	11.2	2.13	1.56	1.0	ND	ND	ND
MARCH -2010	11.9	7.3	2.03	1.57	1.4	<0.4	ND	ND
APRIL -2010	12.8	7.1	1.75	1.29	0.8	ND	ND	ND
MAY -2010	19.2	10.2	1.74	1.16	0.6	ND	<3.9	ND
JUNE -2010	14.0	7.6	2.09	1.19	1.2	ND	<3.9	ND
JULY -2010	9.9	6.7	1.47	1.03	<0.4	ND	ND	<3.9
AUGUST -2010	15.3	7.6	1.55	0.95	1.1	ND	ND	ND
SEPTEMBER-2010	14.7	8.9	1.52	0.91	<0.4	ND	ND	ND
OCTOBER -2010	12.2	8.3	1.50	0.99	1.5	ND	ND	ND
NOVEMBER -2010	10.8	6.8	1.65	1.02	1.1	ND	ND	ND
DECEMBER -2010	10.6	7.4	2.02	1.39	1.0	ND	ND	ND
=======================================	========		=======		========	======	========	======
AVERAGE	13.3	8.0	1.81	1.23	0.9	0.0	0.0	0.0

Zinc	Zinc
2.5	2.5
UG/L	UG/L
PLR	PLE
========	======
145	27
138	26
155	24
157	25
185	27
169	24
113	23
162	22
146	25
170	26
162	28
134	27
========	======
153	25
	2.5 UG/L PLR 145 138 155 157 185 169 113 162 146 170 162 134

POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL SEWAGE Trace Metals

(Limits shown are the 6-Month Median Maximum)

From: 01-JAN-2010 to: 31-DEC-2010

Analyzed by method SM 3112

Analyte:		Mercury	Mercury
MDL		.09	.09
Units		UG/L	UG/L
Source:		PLR	PLE
	=====		
JANUARY	-2010	0.35	ND
FEBRUARY	-2010	0.21	ND
MARCH	-2010	0.10	ND
APRIL	-2010	<0.09	ND
MAY	-2010	0.21	ND
JUNE	-2010	0.22	ND
=======		========	======
AVERAGE		0.18	ND

Analyzed by method EPA 1631

Analyte:	Mercury	Mercury
MDL	.5	.5
Units	NG/L	NG/L
Source:	PLR	PLE
	=======	======
JULY -2010	145.0	6.42
AUGUST -2010	138.0	6.61
SEPTEMBER-2010	105.0	4.30
OCTOBER -2010	159.0	6.08
NOVEMBER -2010	146.0	11.5
DECEMBER -2010	53.7	8.23
	========	
AVERAGE	124.5	7.19

POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL SEWAGE

Ammonia-Nitrogen and Total Cyanides (Limits shown are the 6-Month Median Maximum)

From: 01-JAN-2010 to: 31-DEC-2010

	Ammonia-N	Ammonia-N	Cyanides,Total	Cyanides,Total
	.3 MG/L	.3 MG/L	.002 MG/L	.002 MG/L
	PLR	PLE	PLR	PLE
Limit:		123		0.200
	==========		===========	
JANUARY -2010	29.4	29.6	<0.002	0.002
FEBRUARY -2010	30.4	30.5	0.003	0.003
MARCH -2010	31.6	31.7	<0.002	0.002
APRIL -2010	30.9	30.2	<0.002	0.002
MAY -2010	33.2	33.2	0.002	0.002
JUNE -2010	32.8	32.8	0.003	0.002
JULY -2010	33.6	32.7	<0.002	<0.002
AUGUST -2010	31.7	32.0	0.002	0.003
SEPTEMBER-2010	32.9	31.4	<0.002	0.002
OCTOBER -2010	32.3	31.0	0.002	0.002
NOVEMBER -2010	30.5	31.0	ND	<0.002
DECEMBER -2010	30.2	29.1	<0.002	0.002
==========	=======================================		=======================================	
Average:	31.6	31.3	0.001	0.002

Chlorine Residual, Total .03 MG/L PLE

Limit:	
==========	==========
JANUARY -2010	0.06
FEBRUARY -2010	0.06
MARCH -2010	<0.03
APRIL -2010	ND
MAY -2010	ND
JUNE -2010	ND
JULY -2010	ND
AUGUST -2010	ND
SEPTEMBER-2010	ND
OCTOBER -2010	<0.03
NOVEMBER -2010	ND
DECEMBER -2010	0.04
Average:	0.01

POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL SEWAGE Radioactivity

From: 01-JAN-2010 To: 31-DEC-2010

Analyzed by: TestAmerica Laboratories Richland

Source	Month		Gross Alpha Radiation	Gross Beta Radiation
======	=======	=====	=======================================	=======================================
PLE	JANUARY	-2010	4.9±3.4	33.8±7.3
PLE	FEBRUARY	-2010	9.0±4.9	31.5±7.9
PLE	MARCH	-2010	1.9±3.7	32.8±8.0
PLE	APRIL	-2010	3.2±2.8	29.8±6.8
PLE	MAY	-2010	2.4±3.8	31.8±8.5
PLE	JUNE	-2010	3.2±2.7	31.8±6.6
PLE	JULY	-2010	3.3±3.8	24.7±5.8
PLE	AUGUST	-2010	3.1±2.5	35.6±8.5
PLE	SEPTEMBE	R-2010	0.9±2.7	32.7±7.5
PLE	OCTOBER	-2010	3.2±4.6	46.1±13.0
PLE	NOVEMBER	-2010	3.6±3.0	32.7±7.9
PLE	DECEMBER	-2010	-1.8±3.0	28.1±7.8
======	=======	=====	=======================================	=======================================
AVERAGE			3.1±3.4	32.6±8.0

Source	Month		Gross Alpha Radiation	Gross Beta Radiation
======	=======	=====	=======================================	=======================================
PLR	JANUARY	-2010	3.5±3.0	35.7±7.6
PLR	FEBRUARY	-2010	5.2±3.6	38.7±9.6
PLR	MARCH	-2010	6.7±4.0	34.8±8.2
PLR	APRIL	-2010	3.3±3.6	26.2±7.4
PLR	MAY	-2010	0.4±3.6	35.0±9.0
PLR	JUNE	-2010	6.7±4.0	32.3±7.6
PLR	JULY	-2010	2.3±3.5	30.0±7.0
PLR	AUGUST	-2010	-2.1±2.1	31.8±9.4
PLR	SEPTEMBER	R-2010	2.1±3.0	32.6±8.5
PLR	OCTOBER	-2010	3.0±5.9	29.8±12.0
PLR	NOVEMBER	-2010	1.8±2.8	25.1±9.4
PLR	DECEMBER	-2010	5.6±3.4	29.1±7.6
======	=======		=======================================	=======================================
AVERAGE			3.2±3.5	31.8±8.6

ND= not detected NA= not analyzed NS= not sampled

Units in picocuries/liter (pCi/L)

POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

From 01-JAN-2010 To 31-DEC-2010

			PLE JAN	PLE FEB	PLE MAR	PLE APR	PLE MAY	PLE JUN	PLE JUL	PLE AUG	PLE SEP	PLE OCT	PLE NOV	PLE DEC	PLE
Analyte	MDL	Units	Avg	_	Average										
Aldrin	7	NG/L	ND	ND											
Dieldrin	3	NG/L	ND	ND											
BHC, Alpha isomer	7	NG/L	ND	ND											
BHC, Beta isomer	3	NG/L	ND	ND											
BHC, Gamma isomer	5	NG/L	ND	ND	ND	ND	<5	ND	0						
BHC, Delta isomer	3	NG/L	ND	21	ND	2									
p,p-DDD	3	NG/L	ND	ND											
p,p-DDE	4	NG/L	ND	ND											
p,p-DDT	8	NG/L	ND	ND											
o,p-DDD	4	NG/L	ND	ND											
o,p-DDE	5	NG/L	ND	ND											
o,p-DDT	3	NG/L	ND	ND											
Heptachlor	8	NG/L	ND	ND											
Heptachlor epoxide	4	NG/L	ND	ND											
Alpha (cis) Chlordane	3	NG/L	ND	ND											
Gamma (trans) Chlordane	4	NG/L	ND	ND											
Alpha Chlordene	•	NG/L	NA	NA											
Gamma Chlordene		NG/L	NA	NA											
Oxychlordane	6	NG/L	ND	ND											
Trans Nonachlor	5	NG/L	ND	<5	ND	0									
Cis Nonachlor	3	NG/L	ND	ND											
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND	4	ND	0						
Beta Endosulfan	2	NG/L	ND	ND											
Endosulfan Sulfate	6	NG/L	ND	ND											
Endrin	2	NG/L	ND	ND											
Endrin aldehyde	9	NG/L	ND	ND											
Mirex	10	NG/L	ND	ND											
Methoxychlor	10	NG/L	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Toxaphene	330	NG/L	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
PCB 1016	4000	NG/L	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND
PCB 1221	4000	NG/L	ND	ND											
PCB 1221 PCB 1232	360	NG/L	ND	ND											
PCB 1232 PCB 1242		NG/L	ND	ND ND	ND	ND									
PCB 1242 PCB 1248	2000	NG/L	ND	ND ND	ND	ND									
PCB 1254		NG/L	ND	ND ND	ND	ND									
PCB 1254 PCB 1260		NG/L	ND	ND ND	ND	ND									
PCB 1200 PCB 1262	930	NG/L	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
=======================================		=====	=====	=====	=====	=====		=====	=====	=====	=====	=====	=====		=====
Aldrin + Dieldrin	7	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Hexachlorocyclohexanes	7	NG/L	0	0	0	0	0	0	0	0	0	0	21	0	2
DDT and derivatives	8	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Chlordane + related cmpds.		NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Polychlorinated biphenyls	4000		0	0	0	0	0	0	0	0	0	0	0	0	0
Endosulfans	6	NG/L	0	0	0	9	4	0	9	0	0	9	0	9	0
=======================================		=====	-	-	=====	=====	=====	=====	=====	-	=====	-	=====	=====	=====
Heptachlors	8	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
======================================		NG/L	=====	=====	=====	=====	=====	=====	=====	====	=====	=====	=====	=====	=====
Chlorinated Hydrocarbons	4000	NG/L	0	0	0	0	4	0	0	0	0	0	21	0	2

POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

From 01-JAN-2010 To 31-DEC-2010

Analyte	MDL	Units	PLR JAN Avg	PLR FEB Avg	PLR MAR Avg	PLR APR Avg	PLR MAY Avg	PLR JUN Avg	PLR JUL Avg	PLR AUG Avg	PLR SEP Avg	PLR OCT Avg	PLR NOV Avg	PLR DEC	PLR Average
=======================================	====	=====	===== :	AVB ===== :	Avg =====	_	_	Avg	=====	U	AVB	=====	_	_	=====
Aldrin	7	NG/L	ND	ND	ND										
Dieldrin	3	NG/L	ND	ND	ND										
BHC, Alpha isomer	7	NG/L	ND	ND	ND	ND	7	ND	ND	ND	ND	ND	ND	ND	1
BHC, Beta isomer	3	NG/L	ND	ND	ND										
BHC, Gamma isomer	5	NG/L	ND	ND	ND										
BHC, Delta isomer	3	NG/L	ND	ND	ND										
p,p-DDD	3	NG/L	ND	ND	ND										
p,p-DDE	4	NG/L	ND	<4	<4	ND	ND	ND	ND	ND	<4	ND	ND	ND	0
p,p-DDT	8	NG/L	ND	ND	ND										
o,p-DDD	4	NG/L	ND	4	ND	ND	ND	0							
o,p-DDE	5	NG/L	ND	ND	ND										
o,p-DDT	3	NG/L	ND	ND	ND										
Heptachlor	8	NG/L	ND	9	ND	ND	1								
Heptachlor epoxide	4	NG/L	ND	ND	ND										
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND	ND	4	ND	ND	ND	ND	ND	ND	0
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND	ND	<4	ND	ND	ND	ND	ND	ND	0
Alpha Chlordene		NG/L	NA	NA	NA										
Gamma Chlordene	_	NG/L	NA	NA	NA										
Oxychlordane	6	NG/L	ND	ND	ND										
Trans Nonachlor	5	NG/L	ND	10	<5	ND	1								
Cis Nonachlor	3	NG/L	ND	<3	ND	ND	0								
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND	9	ND	ND	ND	ND	ND	ND	ND	1
Beta Endosulfan	2	NG/L	ND	ND	ND										
Endosulfan Sulfate	6	NG/L	ND	ND	ND										
Endrin	2	NG/L	ND	ND	ND										
Endrin aldehyde	9	NG/L	ND	ND	ND										
Mirex	10	NG/L	ND	ND	ND										
Methoxychlor	10	NG/L	ND	ND	ND										
Toxaphene	330	NG/L	ND	ND	ND										
PCB 1016	4000	NG/L	ND	ND	ND										
PCB 1221	4000	NG/L	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND
PCB 1232 PCB 1242	360	NG/L NG/L	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
PCB 1242 PCB 1248	4000 2000	NG/L NG/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
PCB 1248 PCB 1254		NG/L NG/L	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND
PCB 1254 PCB 1260			ND ND	ND	ND	ND									
PCB 1260 PCB 1262	930	NG/L	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
=======================================		=====	===== :	:	====	=====		=====	=====	=====	=====	=====	=====	=====	=====
Aldrin + Dieldrin	7	NG/L	0	0	0	0	0	0	0	0	0	0	0	0	0
Hexachlorocyclohexanes	7	NG/L	0	0	0	0	7	0	0	0	0	0	0	0	1
DDT and derivatives	8	NG/L	0	0	0	0	0	0	0	0	4	0	0	0	0
Chlordane + related cmpds.		NG/L	0	0	0	0	0	4	0	0	0	0	0	0	0
Polychlorinated biphenyls	4000	•	0	0	0	0	0	0	0	0	0	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0	9	0	0	0	0	0	0	0	1
=======================================	====	•							=====						
Heptachlors	8	NG/L	0	0	0	0	0	0	0	0	0	9	0	0	1
	====	=====			====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Chlorinated Hydrocarbons	4000	NG/L	0	0	0	0	16	4	0	0	4	19	0	0	4

nd=not detected; NS=not sampled; NA=not analyzed

POINT LOMA WASTEWATER TREATMENT PLANT / METROBIOSOLIDS CENTER SLUDGE PROJECT- ANNUAL SUMMARY Organophosphorus Pesticides

From 01-JAN-2010 To 31-DEC-2010

			PLE	PLE	PLE
			04-MAY-2010	03-AUG-2010	05-OCT-2010
Analyte	MDL	Units	P515390	P524948	P533505
	===	=====	========		
Demeton O	.15	UG/L	ND	ND	ND
Demeton S	.08	UG/L	ND	ND	ND
Diazinon	.03	UG/L	ND	ND	ND
Guthion	.15	UG/L	ND	ND	ND
Malathion	.03	UG/L	0.65	ND	0.11
Parathion	.03	UG/L	ND	ND	ND
	===	=====	========	========	========
Thiophosphorus Pesticides	.15	UG/L	0.65	0.00	0.11
Demeton -0, -S	.15	UG/L	0.00	0.00	0.00
	===	=====	========		
Total Organophosphorus Pesticides	.3	UG/L	0.7	0.0	0.1
	===	=====	========		
Bolstar	.07	UG/L	ND	NR	NR
Chlorpyrifos	.03	UG/L	ND	ND	ND
Coumaphos	.15	UG/L	ND	ND	ND
Dibrom	.2	UG/L	ND	NR	NR
Dichlofenthion	.03	UG/L	ND	NR	NR
Dichlorvos	.05	UG/L	ND	ND	ND
Dimethoate	.04	UG/L	ND	ND	ND
Disulfoton	.02	UG/L	ND	ND	ND
EPN	.09	UG/L	ND	NR	NR
Ethoprop	.04	UG/L	ND	NR	NR
Fensulfothion	.07	UG/L	ND	NR	NR
Merphos	.09	UG/L	ND	NR	NR
Mevinphos, e isomer	.05	UG/L	ND	NR	NR
Mevinphos, z isomer	.3	UG/L	ND	NR	NR
Phorate	.04	UG/L	ND	NR	NR
Ronnel	.03	UG/L	ND	NR	NR
Stirophos	.03	UG/L	ND	ND	ND
Sulfotepp	.04	UG/L	ND	NR	NR
Tokuthion	.06	UG/L	ND	NR	NR
Trichloronate	.04	UG/L	ND	NR	NR
	===	=====	========	========	========
Total Organophosphorus Pesticides	.3	UG/L	0.7	0.0	0.1

ND=not detected NR=not required

POINT LOMA WASTEWATER TREATMENT PLANT / METROBIOSOLIDS CENTER SLUDGE PROJECT- ANNUAL SUMMARY Organophosphorus Pesticides

From 01-JAN-2010 To 31-DEC-2010

			PLR	PLR	PLR
Analyta	MDI	Units	04-MAY-2010 P515395	03-AUG-2010 P524953	05-0CT-2010 P533510
Analyte				F324933	
Demeton O	.15	UG/L	ND	ND	ND
Demeton S	.08	UG/L	ND	ND	ND
Diazinon	.03	UG/L	ND	ND	ND
Guthion	.15	UG/L	ND	ND	ND
Malathion	.03	UG/L	ND	ND	ND
Parathion	.03	UG/L	ND	ND	ND
	===	=====	========	========	========
Thiophosphorus Pesticides	.15	UG/L	0.00	0.00	0.00
Demeton -0, -S	.15	UG/L	0.00	0.00	0.00
	===	=====	========	========	========
Total Organophosphorus Pesticides	.3	UG/L	0.0	0.0	0.0
	===	=====	========	========	========
Bolstar		UG/L	ND	NR	NR
Chlorpyrifos	.03	UG/L	ND	ND	ND
Coumaphos		UG/L	ND	ND	ND
Dibrom	.2	UG/L	ND	NR	NR
Dichlofenthion		UG/L	ND	NR	NR
Dichlorvos		UG/L	ND	ND	ND
Dimethoate		UG/L	ND	ND	ND
Disulfoton		UG/L	ND	ND	ND
EPN		UG/L	ND	NR	NR
Ethoprop		UG/L	ND	NR	NR
Fensulfothion		UG/L	ND	NR	NR
Merphos		UG/L	ND	NR	NR
Mevinphos, e isomer		UG/L	ND	NR	NR
Mevinphos, z isomer	.3	UG/L	ND	NR	NR
Phorate		UG/L	ND	NR	NR
Ronnel		UG/L	ND	NR	NR
Stirophos		UG/L	ND	ND	ND
Sulfotepp		UG/L	ND	NR	NR
Tokuthion		UG/L	ND	NR	NR
Trichloronate	.04	UG/L	ND	NR	NR

ND=not detected NR=not required

POINT LOMA WASTEWATER TREATMENT PLANT ANNUAL SEWAGE MONTHLY - Tributyl Tin analysis

Annual 2010

Effluent

			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
Analyte	MDL	Units													Average
=========	===	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND												
Monobutyltin	16	UG/L	ND												
Tributyltin	2	UG/L	ND												

Influent

			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
Analyte	MDL	Units													Average
========	===	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Dibutyltin	7	UG/L	ND												
Monobutyltin	16	UG/L	ND												
Tributyltin	2	UG/L	ND												

ND=not detected

POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL - Acid Extractables

From 01-JAN-2010 to 31-DEC-2010

Analyte	MDL	Units	PLE JAN Avg	PLE FEB Avg	PLE MAR Avg	PLE APR Avg	PLE MAY Avg	PLE JUN Avg	PLE JUL Avg	PLE AUG Avg	PLE SEP Avg	PLE OCT Avg	PLE NOV Avg	_	Average
2-chlorophenol		===== UG/L	===== ND	ND	ND	===== ND	===== ND	ND	===== ND	===== ND	ND	ND	ND	===== ND	ND
4-chloro-3-methylphenol		UG/L	ND	ND	ND										
2,4-dichlorophenol	1.01	UG/L	ND	ND	ND										
2,4-dimethylphenol	2.01	UG/L	ND	ND	ND										
2,4-dinitrophenol	2.16	UG/L	ND	ND	ND										
2-methyl-4,6-dinitrophenol		UG/L	ND	ND	ND										
2-nitrophenol		UG/L	ND	ND	ND										
4-nitrophenol		UG/L	ND	ND	ND										
Pentachlorophenol Phenol		UG/L UG/L	ND 11.7	ND 15.3	ND 13.9	ND 15.4	<1.1 14.1	ND 16.8	ND 15.1	ND 13.7	ND 17.5	ND 15.9	ND 14.2	ND 14.3	0.0 14.8
2,4,6-trichlorophenol		UG/L	ND	ND	ND										
Total Chlorinated Phenols		UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
=======================================		•		=====			=====						=====		
Total Non-Chlorinated Phenols		UG/L =====	11.7 =====	15.3 =====	13.9 =====	15.4 =====	14.1		15.1 =====		17.5 =====	15.9 =====	14.2		14.8
Phenols	2.16	UG/L	11.7	15.3	13.9	15.4	14.1	16.8	15.1	13.7	17.5	15.9	14.2	14.3	14.8
Additional Analytes Determined;										=====					
2-methylphenol		UG/L	ND	ND	ND										
<pre>3-methylphenol(4-MP is unresolved)</pre>		UG/L	NA	NA	NA										
4-methylphenol(3-MP is unresolved)			30.0	46.8	25.7	37.1	31.8	31.6	30.4	28.5	24.8	20.8	19.9	23.6	29.3
2,4,5-trichlorophenol	1.66	UG/L	ND	ND	ND										
Analyte				PLR FEB Avg	PLR MAR Avg		PLR MAY Avg	PLR JUN Avg	PLR JUL Avg		PLR SEP Avg		PLR NOV Avg	=====	
2-chlorophenol		UG/L UG/L	ND ND	ND ND	ND ND										
4-chloro-3-methylphenol 2,4-dichlorophenol		UG/L	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND						
2,4-dimethylphenol		UG/L	ND	ND	ND										
2,4-dinitrophenol		UG/L	ND	ND	ND										
2-methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND	ND										
2-nitrophenol	1.55	UG/L	ND	ND	ND										
4-nitrophenol	1.14	UG/L	ND	ND	ND										
Pentachlorophenol		UG/L	ND	ND	ND										
Phenol		UG/L	13.1	17.3	16.3	16.2	18.0	18.5	17.9	18.3	22.1	15.4	21.7	16.1	17.6
2,4,6-trichlorophenol Total Chlorinated Phenols	1.65	UG/L UG/L	ND 0.0	ND 0.0	ND 0.0										
======================================		•	=====			=====	=====		=====					=====	=====
Total Non-Chlorinated Phenols	2.16	UG/L	13.1	17.3	16.3	16.2	18.0	18.5	17.9	18.3	22.1	15.4	21.7	16.1	17.6
Phenols		UG/L					18.0								
Additional Analytes Determined;															
2-methylphenol		===== UG/L	===== ND	===== ND	===== ND	==== ND	==== ND	==== ND	==== ND	===== ND	ND	ND	ND	ND	==== ND
3-methylphenol(4-MP is unresolved)	2.13	UG/L	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA						
4-methylphenol(3-MP is unresolved)	2.11			43.0	34.1	39.6					41.9	31.4	44.2		37.5
2,4,5-trichlorophenol		UG/L	ND	ND	ND										

POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

From 01-JAN-2010 to 31-DEC-2010

			PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE
Analyte	MDL	Units	JAN	FEB	MAR Avg	APR	MAY	JUN	JUL Avg	AUG	SEP	OCT Ava	NOV	DEC	Average
=======================================		=====	Avg ====	Avg	_	Avg	Avg	Avg	_	Avg	Avg ====	Avg	Avg	U	=====
Acenaphthene	1.8	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzidine	1.52	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[A]anthracene	1.1	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,4-benzo(B)fluoranthene	1.35	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[K]fluoranthene	1.49	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[A]pyrene	1.25	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[G,H,I]perylene	1.09	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethoxy)methane		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl) ether		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chlorophenyl phenyl ether		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronaphthalene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(A,H)anthracene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate		UG/L	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate		UG/L UG/L	ND 6.5	ND 6.8	10.7	ND 9.1	ND 8.8	<9.0 5.9	ND 7.3	6.1	ND 5.2	ND 6.8	ND 5.1	ND 5.2	0.0 7.0
Diethyl phthalate Dimethyl phthalate		UG/L	ND	ND	ND	9.1 ND	ND	o.9 ND	7.3 ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	1.44	UG/L	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND
3,3-dichlorobenzidine		UG/L	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrotoluene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-diphenylhydrazine		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	1.64	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	1.25	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	1.32	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene	1.14	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	1.53	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	1.65	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-nitrosodimethylamine		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-nitrosodiphenylamine		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Polynuc. Aromatic Hydrocarbons	1.77	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
======================================			=====												=====
Base/Neutral Compounds		UG/L	6.5 =====	6.8	10.7	9.1	8.8	5.9 =====	7.3	6.1	5.2	6.8	5.1	5.2	7.0
Benzo[e]pyrene		UG/L	===== ND	===== ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biphenyl		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dimethylnaphthalene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-methylnaphthalene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-methylphenanthrene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methylnaphthalene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3,5-trimethylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perylene	1.41	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

From 01-JAN-2010 to 31-DEC-2010

			PLR JAN	PLR FEB	PLR MAR	PLR APR	PLR MAY	PLR JUN	PLR JUL	PLR AUG	PLR SEP	PLR OCT	PLR NOV	PLR DEC	PLR
Analyte	MDL	Units	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Average
Acenaphthene	1.8	==== UG/L	===== ND	ND	ND	ND	==== ND	===== ND	ND	ND	ND	ND	==== ND	==== ND	ND
Acenaphthylene	1.77	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	1.29	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzidine	1.52	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[A]anthracene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,4-benzo(B)fluoranthene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[K]fluoranthene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[A]pyrene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[G,H,I]perylene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethoxy)methane		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-chloroethyl) ether		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-chlorophenyl phenyl ether		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloronaphthalene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzo(A,H)anthracene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate		UG/L	ND	4.6	ND	ND	3.1	ND	ND	ND	ND	ND	ND	ND	0.6
Di-n-butyl phthalate		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate		UG/L	ND	12.5	11.9	11.6	23.8	11.6	9.4	ND	9.4	18.0	14.5	16.6	11.6
Diethyl phthalate		UG/L	5.7	6.8	6.8	6.9	10.0	5.2	6.2	6.2	5.8	5.5	6.6	3.7	6.3
Dimethyl phthalate		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3-dichlorobenzidine		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-dinitrotoluene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dinitrotoluene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-diphenylhydrazine		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene	1.6	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-nitrosodimethylamine		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-nitrosodi-n-propylamine		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-nitrosodiphenylamine		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
=======================================			=====		=====	=====				=====				=====	
Polynuc. Aromatic Hydrocarbons	1.77	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		=====	=====		=====									=====	=====
Base/Neutral Compounds	8.96	UG/L	5.7	23.9	18.7	18.5	36.9	16.8	15.6	6.2	15.2	23.5	21.1	20.3	18.5
	====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====	=====
Benzo[e]pyrene	1.44	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biphenyl	2.29	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-dimethylnaphthalene	2.16	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-methylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-methylphenanthrene	1.46	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-methylnaphthalene	2.14	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,3,5-trimethylnaphthalene	2.18	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Perylene	1.41	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

From 01-JAN-2010 to 31-DEC-2010

			PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE	PLE
Analyte	MDL	Units	JAN Avg	FEB Avg	MAR Avg	APR Avg	MAY Avg	JUN Avg	JUL Avg	AUG Avg	SEP Avg	OCT Avg	NOV Avg	DEC Ava	Average
=======================================	====	=====	=====	=====	=====	=====	=====	_	_	=====	=====	=====	=====	_	=====
Acrolein	1.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	0.6	0.9	0.9	0.8	ND	ND	ND	ND	ND	<0.5	1.2	0.7	0.4
Bromoform	.5	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.8	ND	0.2
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.4	ND	0.0
Chloroethane	.9	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6	ND	0.2
Chloroform	.2	UG/L	4.9	3.6	5.2	5.3	4.2	4.7	4.0	5.1	5.1	4.9	10.1	3.3	5.0
Chloromethane	.5	UG/L	5.2	3.2 0.8	1.6 <0.6	4.3	2.4 ND	4.6	2.1 ND	4.9	4.2 ND	4.2 ND	23.8 ND	2.3 0.7	5.2
Dibromochloromethane 1,2-dichlorobenzene	.6 .4	UG/L UG/L	ND ND	ND	ND	<0.6 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	0.1 ND
1,3-dichlorobenzene	.5	UG/L	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
1,4-dichlorobenzene	.4	UG/L	<0.4	ND ND	0.5	<0.4	0.5	0.6	0.6	0.6	0.9	0.6	0.6	0.6	0.5
Dichlorodifluoromethane	.66	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane	.5	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	.3	UG/L	ND	0.3	ND	ND	ND	0.5	0.6	0.4	ND	<0.3	0.4	ND	0.2
Methylene chloride	.3	UG/L	1.7	1.3	1.6	2.3	1.2	57.6	46.6	2.1	1.5	2.2	1.6	5.3	10.4
1,1,2,2-tetrachloroethane	.5	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1.1	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	.4	UG/L	1.0	0.6	0.9	0.7	1.1	2.7	2.4	2.9	1.2	1.1	1.0	0.8	1.4
1,1,1-trichloroethane	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	.5	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Halamathana Dungaahla Connda		===== UG/L	5.2	3.2	1.6	4.3	2.4	4.6	2.1	4.9	4.2	4.2	25.6	2.3	5.4
Halomethane Purgeable Cmpnds Dichlorobenzenes	.7 .5	UG/L UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Chloromethanes	.5	UG/L	11.8	8.1	8.4	11.9	7.8	66.9	52.7	12.1	10.8	11.3	35.5	10.9	20.7
=======================================			=====				7.0	=====		=====				=====	=====
Purgeable Compounds	1.3	UG/L	13.4	10.7	10.7	13.4	9.4	70.7	56.3	16.0	12.9	13.0	43.1	13.7	23.6
=======================================			===== :												
Acetone	4.5	UG/L	371	741	775	636	1620	696	1560	1090	449	1740	785	763	936
Allyl chloride	.6	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone	6.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.8	ND	7.2	1.3
Carbon disulfide	.6	UG/L	2.0	1.1	1.8	2.5	2.4	3.0	2.5	10.2	4.6	3.3	7.0	2.2	3.6
Chloroprene	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dibromoethane	.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Iodide	.6	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	1.3	3.8	3.2	1.3	2.3	3.0	2.1	2.3	2.0	0.7	1.2	1.5	2.1
2-nitropropane	12	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ortho-xylene	.4	UG/L	ND	ND	ND	ND	ND	0.6	0.7	0.6	ND	0.5	0.6	ND	0.3
Styrene	.3	UG/L	ND	0.8	1.0	0.5	<0.3	ND	0.2						
1,2,4-trichlorobenzene		UG/L	ND	ND	ND	ND	ND	ND 1 1	ND	ND 1 2	ND	ND 1 0	ND 1 2	ND	ND
meta,para xylenes	.6	UG/L	ND	0.7	0.6	ND	ND	1.1	2.1	1.2	ND	1.0	1.2	ND	0.7
2-chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND a a
4-methyl-2-pentanone	1.3	UG/L	ND	ND	ND	<1.3	ND	0.0							

nd=not detected; NS=not sampled; NA=not analyzed

POINT LOMA WASTEWATER TREATMENT PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

From 01-JAN-2010 to 31-DEC-2010

			PLR JAN	PLR FEB	PLR MAR	PLR APR	PLR MAY	PLR JUN	PLR JUL	PLR AUG	PLR SEP	PLR OCT	PLR NOV	PLR DEC	PLR
Analyte	MDL	Units	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg		Average
	====	=====			====	====	=====	=====		====		====	=====		=====
Acrolein	1.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene Browndishlanomathana	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane Bromoform	.5 .5	UG/L UG/L	ND ND	0.6 ND	0.5 ND	0.8 ND	ND ND	0.6 ND	0.2 ND						
Bromomethane	.7	UG/L	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	.2	UG/L	2.4	3.4	3.0	3.4	2.6	2.8	3.7	3.2	3.4	2.9	3.6	2.1	3.0
Chloromethane	.5	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	ND	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	0.1
1,2-dichlorobenzene	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	.5	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	.4	UG/L	0.5	0.5	0.4	0.5	0.7	0.7	0.8	0.5	1.3	0.5	1.1	0.7	0.7
Dichlorodifluoromethane	.66	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethane	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloroethane 1,1-dichloroethene	.5	UG/L	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
trans-1,2-dichloroethene	.4 .6	UG/L UG/L	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichloropropane	.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	.3	UG/L	ND	ND	1.8	ND	0.8	1.8	0.7	0.4	0.7	0.9	1.0	0.5	0.7
Methylene chloride	.3	UG/L	1.2	1.2	1.3	2.0		748.0		1.5	2.9	1.7	1.6	19.4	74.7
1,1,2,2-tetrachloroethane	.5	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	1.1	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	.4	UG/L	0.8	0.7	0.5	0.6	0.8	1.6	1.8	3.0	0.8	0.7	0.6	0.6	1.0
1,1,1-trichloroethane	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloroethane	.5	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	.4	UG/L =====	ND ===== :	ND	ND =====	ND	ND								
Halomethane Purgeable Cmpnds		UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Dichlorobenzenes	.5	UG/L	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Chloromethanes	.5	UG/L	3.6	4.6	4.3	5.4	3.9			4.7	6.3	4.6	5.2	21.5	77.7
=======================================	====	=====													====
Purgeable Compounds	1.3	UG/L	4.9	7.1	7.5	7.3	6.2	754.9		8.6	9.1	6.7	7.9	24.6	80.5
A t							=====	1120		1160				1010	
Acetone	4.5	UG/L	361	459	982	707	502	1130	1420	1160	703	1030	2890	1010	1030
Allyl chloride Benzyl chloride	.6 1.1	UG/L UG/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-butanone		UG/L	ND ND	ND	ND	ND	6.9	ND	7.5	ND	7.3	ND	ND	6.9	2.4
Carbon disulfide	.6	UG/L	1.9	0.9	0.8	1.6	1.8	2.1	2.4	4.1	2.6	2.2	3.1	1.6	2.1
Chloroprene	.4	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dibromoethane	.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl Iodide	.6	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	1.2	4.4	2.0	1.1	0.9	2.5	1.4	1.9	0.9	0.5	0.6	0.9	1.5
2-nitropropane	12	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ortho-xylene	.4	UG/L	ND	ND	1.8	ND	0.9	0.9	1.1	0.5	0.5	5.4	0.5	0.9	1.0
Styrene	.3	UG/L	0.5	1.1	4.0	0.5	0.7	0.9	0.6	0.3	ND	ND	0.9	0.5	0.8
1,2,4-trichlorobenzene		UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
meta,para xylenes	.6	UG/L	ND	ND	4.5	ND	1.9	1.6	2.5	1.0	1.0	3.0	1.1	1.8	1.5
2-chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone	1.3	UG/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

nd=not detected; NS=not sampled; NA=not analyzed

Method: SW8280A				EFFLUENT	EFFLUENT TCDD	EFFLUENT	EFFLUENT TCDD	EFFLUENT	EFFLUENT TCDD
				JAN-2010	JAN-2010	FEB-2010	FEB-2010	MAR-2010	MAR-2010
Analytes	MDL	Units	Equiv.	P504896	P504896	P504388	P504388	P511471	P511471
=======================================			•						
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND	ND	ND	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	111	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	137	PG/L	0.010	ND	ND	ND	ND	ND	ND
octa CDD	247	PG/L	0.001	ND	ND	ND	ND	ND	ND
2,3,7,8-tetra CDF	115	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,7,8-penta CDF	140	PG/L	0.050	ND	ND	ND	ND	ND	ND
2,3,4,7,8-penta CDF	118	PG/L	0.500	ND	ND	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	147	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	107	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	152	PG/L	0.100	ND	ND	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	148	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	90	PG/L	0.010	ND	ND	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF	166	PG/L	0.010	ND	ND	ND	ND	ND	ND
octa CDF	222	PG/L	0.001	ND	ND	ND	ND	ND	ND
Method: SW8280A				EFFLUENT	EFFLUENT TCDD	EFFLUENT MAY 2010	EFFLUENT TCDD	EFFLUENT	EFFLUENT TCDD
	MDI	Unite	Fauty	APR-2010	TCDD APR-2010	MAY-2010	TCDD MAY-2010	JUN-2010	TCDD JUN-2010
Analytes		Units	Equiv.	APR-2010 P513468	TCDD APR-2010 P513468	MAY-2010 P515390	TCDD MAY-2010 P515390	JUN-2010 P522778	TCDD JUN-2010 P522778
	=== 125	====== PG/L	1.000	APR-2010	TCDD APR-2010 P513468	MAY-2010 P515390	TCDD MAY-2010 P515390	JUN-2010	TCDD JUN-2010 P522778
Analytes	=== 125	=======		APR-2010 P513468	TCDD APR-2010 P513468 ====================================	MAY-2010 P515390	TCDD MAY-2010 P515390	JUN-2010 P522778	TCDD JUN-2010 P522778
Analytes ====================================	=== 125 123	====== PG/L	1.000	APR-2010 P513468 ====================================	TCDD APR-2010 P513468 ====================================	MAY-2010 P515390 =====	TCDD MAY-2010 P515390 =====	JUN-2010 P522778 ======	TCDD JUN-2010 P522778 ======
Analytes ====================================	=== 125 123 113 98	PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100	APR-2010 P513468 ====================================	TCDD APR-2010 P513468 	MAY-2010 P515390 ND ND ND ND	TCDD MAY-2010 P515390 	JUN-2010 P522778 ====== ND ND ND ND	TCDD JUN-2010 P522778 ====== ND ND ND ND
Analytes ====================================	125 123 113 98 111	PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100	APR-2010 P513468 ====================================	TCDD APR-2010 P513468 	MAY-2010 P515390 ND ND ND ND ND	TCDD MAY-2010 P515390 ND ND ND ND ND ND	JUN-2010 P522778 ====== ND ND ND ND ND ND	TCDD JUN-2010 P522778 ======= ND ND ND ND ND ND
Analytes ====================================	=== 125 123 113 98 111 137	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010	APR-2010 P513468 ====================================	TCDD APR-2010 P513468 ND	MAY-2010 P515390 ND ND ND ND ND ND	TCDD MAY-2010 P515390 	JUN-2010 P522778 ======= ND ND ND ND ND ND	TCDD JUN-2010 P522778 ======= ND ND ND ND ND ND ND
Analytes ====================================	=== 125 123 113 98 111 137 247	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100 0.010	APR-2010 P513468 ====================================	TCDD APR-2010 P513468 ND	MAY-2010 P515390 ND ND ND ND ND ND ND	TCDD MAY-2010 P515390 	JUN-2010 P522778 ======= ND ND ND ND ND ND ND	TCDD JUN-2010 P522778 ======= ND ND ND ND ND ND ND ND
Analytes ====================================	=== 125 123 113 98 111 137 247 115	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100 0.010 0.001 0.100	APR-2010 P513468 ====================================	TCDD APR-2010 P513468	MAY-2010 P515390 ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515390 ND	JUN-2010 P522778 ======== ND ND ND ND ND ND ND ND ND	TCDD JUN-2010 P522778 ======= ND
Analytes	=== 125 123 113 98 111 137 247 115 140	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100 0.010 0.001 0.001 0.050	APR-2010 P513468 ====================================	TCDD APR-2010 P513468	MAY-2010 P515390 ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515390	JUN-2010 P522778 	TCDD JUN-2010 P522778 ==================================
Analytes 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8-hexa CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 2,3,4,7,8-penta CDF	=== 125 123 113 98 111 137 247 115 140 118	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100 0.010 0.001 0.001 0.050 0.500	APR-2010 P513468 ====================================	TCDD APR-2010 P513468	MAY-2010 P515390 ND ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515390	JUN-2010 P522778 	TCDD JUN-2010 P522778 ND
Analytes 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8-hexa CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF	=== 125 123 113 98 111 137 247 115 140 118 147	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100 0.010 0.010 0.001 0.050 0.500 0.100	APR-2010 P513468	TCDD APR-2010 P513468	MAY-2010 P515390 ND ND ND ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515390	JUN-2010 P522778	TCDD JUN-2010 P522778 ==================================
Analytes ====================================	=== 125 123 113 98 111 137 247 115 140 118 147 107	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.010 0.050 0.500 0.100 0.100	APR-2010 P513468	TCDD APR-2010 P513468	MAY-2010 P515390 ND	TCDD MAY-2010 P515390	JUN-2010 P522778	TCDD JUN-2010 P522778 ND
Analytes ====================================	125 123 113 98 111 137 247 115 140 118 147 107	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.001 0.050 0.500 0.100 0.100 0.100	APR-2010 P513468 ====================================	TCDD APR-2010 P513468	MAY-2010 P515390 ND	TCDD MAY-2010 P515390	JUN-2010 P522778	TCDD JUN-2010 P522778 ==================================
Analytes ====================================	=== 125 123 113 98 111 137 247 115 140 118 147 107 152 148	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.010 0.050 0.500 0.100 0.100 0.100 0.100	APR-2010 P513468 ====================================	TCDD APR-2010 P513468 ND ND ND ND ND ND ND ND	MAY-2010 P515390 ND	TCDD MAY-2010 P515390	JUN-2010 P522778	TCDD JUN-2010 P522778 ======== ND
Analytes	=== 125 123 113 98 111 137 247 115 140 118 147 107 152 148 90	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.001 0.001 0.500 0.500 0.100 0.100 0.100 0.100	APR-2010 P513468 ====================================	TCDD APR-2010 P513468 ====================================	MAY-2010 P515390 ND	TCDD MAY-2010 P515390	JUN-2010 P522778	TCDD JUN-2010 P522778 ========= ND
Analytes ====================================	=== 125 123 113 98 111 137 247 115 140 118 147 107 152 148 90 166	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.010 0.050 0.500 0.100 0.100 0.100 0.100	APR-2010 P513468 ====================================	TCDD APR-2010 P513468 ND ND ND ND ND ND ND ND	MAY-2010 P515390 ND	TCDD MAY-2010 P515390	JUN-2010 P522778	TCDD JUN-2010 P522778 ======== ND

Above are permit required CDD/CDF isomers. nd= not detected NA= not analyzed NS= not sampled NS= not sampled

Method: SW8280A				EFFLUENT	EFFLUENT TCDD
				JUL-2010	JUL-2010
Analytes	MDL	Units	Equiv.	P525975	P525975
	===	=======	=====	========	========
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND
1,2,3,7,8,9-hexa CDD	111	PG/L	0.100	ND	ND
1,2,3,4,6,7,8-hepta CDD	137	PG/L	0.010	ND	ND
octa CDD	247	PG/L	0.001	ND	ND
2,3,7,8-tetra CDF	115	PG/L	0.100	ND	ND
1,2,3,7,8-penta CDF	140	PG/L	0.050	ND	ND
2,3,4,7,8-penta CDF	118	PG/L	0.500	ND	ND
1,2,3,4,7,8-hexa CDF	147	PG/L	0.100	ND	ND
1,2,3,6,7,8-hexa CDF	107	PG/L	0.100	ND	ND
1,2,3,7,8,9-hexa CDF	152	PG/L	0.100	ND	ND
2,3,4,6,7,8-hexa CDF	148	PG/L	0.100	ND	ND
1,2,3,4,6,7,8-hepta CDF	90	PG/L	0.010	ND	ND
1,2,3,4,7,8,9-hepta CDF	166	PG/L	0.010	ND	ND
octa CDF	222	PG/L	0.001	ND	ND

Method: EPA1613				EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT
					TCDD		TCDD		TCDD
				AUG-2010	AUG-2010	SEP-2010	SEP-2010	OCT-2010	OCT-2010
Analytes	MDL	Units	Equiv.	P524948	P524948	P530839	P530839	P533505	P533505
=======================================	====	=======	=====	========	========	========	========	========	========
2,3,7,8-tetra CDD	.212	PG/L	1.000	ND	ND	ND	ND	ND	ND
1,2,3,7,8-penta CDD	.302	PG/L	0.500	ND	ND	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.328	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.381	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.351	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.495	PG/L	0.010	4.80	0.048	3.0	0.030	ND	ND
octa CDD	1.02	PG/L	0.001	30.0	0.03	24.0	0.024	27.0	0.027
2,3,7,8-tetra CDF	.112	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.219	PG/L	0.050	ND	ND	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.232	PG/L	0.500	ND	ND	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.162	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	.167	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	.185	PG/L	0.100	ND	ND	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	.185	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	.251	PG/L	0.010	ND	ND	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND	ND	ND
octa CDF		PG/L	0.001	ND	ND	ND	ND	ND	ND

Above are permit required CDD/CDF isomers. nd= not detected

NA= not analyzed NS= not sampled

Method: EPA1613				EFFLUENT	EFFLUENT	EFFLUENT	EFFLUENT
					TCDD		TCDD
				NOV-2010	NOV-2010	DEC-2010	DEC-2010
Analytes	MDL	Units	Equiv.	P539664	P539664	P544952	P544952
=======================================	====	=======	=====	========	=======		
2,3,7,8-tetra CDD	.212	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	.302	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.328	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.381	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.351	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.495	PG/L	0.010	3.60	0.036	3.0	0.030
octa CDD	1.02	PG/L	0.001	30.0	0.03	29.0	0.029
2,3,7,8-tetra CDF	.112	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.219	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.232	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.162	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	.167	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF	.185	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	.185	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	.251	PG/L	0.010	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF			0.010	ND	ND	ND	ND
octa CDF	.451	PG/L	0.001	ND	ND	ND	ND

Above are permit required CDD/CDF isomers. nd= not detected NA= not analyzed NS= not sampled NS= not sampled

Method: SW8280A				INFLUENT	INFLUENT TCDD	INFLUENT	INFLUENT TCDD	INFLUENT	INFLUENT TCDD
				FEB-2010	FEB-2010	JAN-2010	JAN-2010	MAR-2010	MAR-2010
Analytes	MDI	Units	Equiv.	P504393	P504393	P504899	P504899	P511474	P511474
=======================================			======	=========		=========		=========	
2,3,7,8-tetra CDD		PG/L	1.000	ND	ND	ND	ND	ND	ND
1,2,3,7,8-penta CDD		PG/L	0.500	ND	ND	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD		PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD		PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD			0.010	ND	ND	ND	ND	ND	ND
octa CDD		PG/L	0.001	ND	ND	ND	ND	ND	ND
2,3,7,8-tetra CDF		PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,7,8-penta CDF		PG/L	0.050	ND	ND	ND	ND	ND	ND
2,3,4,7,8-penta CDF		PG/L	0.500	ND	ND	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDF		PG/L	0.100	ND	ND	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF		PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF		PG/L	0.010	ND	ND	ND	ND	ND	ND
1,2,3,4,7,8,9-hepta CDF		•	0.010	ND	ND	ND	ND	ND	ND
octa CDF		PG/L	0.001	ND	ND	ND	ND	ND	ND
Method: SW8280A				INFLUENT	INFLUENT TCDD	INFLUENT	INFLUENT TCDD	INFLUENT	INFLUENT TCDD
	MDI	Units	Equiv	APR-2010	TCDD APR-2010	MAY-2010	TCDD MAY-2010	JUN-2010	TCDD JUN-2010
Analytes		Units	Equiv.	APR-2010 P513471	TCDD APR-2010 P513471	MAY-2010 P515395	TCDD MAY-2010 P515395	JUN-2010 P522781	TCDD JUN-2010 P522781
Analytes	===		Equiv. ===== 1.000	APR-2010 P513471	TCDD APR-2010 P513471	MAY-2010 P515395	TCDD MAY-2010 P515395	JUN-2010	TCDD JUN-2010 P522781
Analytes ====================================	=== 125		=====	APR-2010 P513471	TCDD APR-2010 P513471	MAY-2010 P515395	TCDD MAY-2010 P515395	JUN-2010 P522781	TCDD JUN-2010 P522781
Analytes	=== 125 123	====== PG/L	1.000	APR-2010 P513471 ======	TCDD APR-2010 P513471 ======	MAY-2010 P515395 ======	TCDD MAY-2010 P515395 ======	JUN-2010 P522781 ======	TCDD JUN-2010 P522781 =====
Analytes ====================================	=== 125 123	PG/L PG/L	1.000 0.500	APR-2010 P513471 ===== ND ND	TCDD APR-2010 P513471 ====== ND ND	MAY-2010 P515395 ===== ND ND	TCDD MAY-2010 P515395 ====== ND ND	JUN-2010 P522781 ====== ND ND	TCDD JUN-2010 P522781 ===== ND ND
Analytes ====================================	=== 125 123 113 98	PG/L PG/L PG/L	1.000 0.500 0.100	APR-2010 P513471 ====== ND ND ND	TCDD APR-2010 P513471 ====== ND ND ND	MAY-2010 P515395 ====== ND ND ND	TCDD MAY-2010 P515395 ====== ND ND ND	JUN-2010 P522781 ====== ND ND ND	TCDD JUN-2010 P522781 ===== ND ND ND
Analytes ====================================	125 123 113 98 111	PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100	APR-2010 P513471 ====== ND ND ND ND	TCDD APR-2010 P513471 ====== ND ND ND ND ND	MAY-2010 P515395 ====== ND ND ND ND	TCDD MAY-2010 P515395 ====== ND ND ND ND	JUN-2010 P522781 ====== ND ND ND ND	TCDD JUN-2010 P522781 ====== ND ND ND ND ND
Analytes ====================================	=== 125 123 113 98 111 137	PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100	APR-2010 P513471 ====== ND ND ND ND ND ND	TCDD APR-2010 P513471 ====== ND ND ND ND ND ND	MAY-2010 P515395 ====== ND ND ND ND ND ND	TCDD MAY-2010 P515395 ====== ND ND ND ND ND ND	JUN-2010 P522781 ====== ND ND ND ND ND	TCDD JUN-2010 P522781 ====== ND ND ND ND ND ND
Analytes ====================================	=== 125 123 113 98 111 137 247	PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100	APR-2010 P513471 ======= ND ND ND ND ND ND ND	TCDD APR-2010 P513471 ======= ND	MAY-2010 P515395 ======= ND ND ND ND ND ND ND	TCDD MAY-2010 P515395 ====== ND ND ND ND ND ND ND	JUN-2010 P522781 ======= ND ND ND ND ND ND	TCDD JUN-2010 P522781 ====== ND
Analytes ====================================	=== 125 123 113 98 111 137 247 115	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010	APR-2010 P513471 ======= ND ND ND ND ND ND ND ND	TCDD APR-2010 P513471 ======= ND	MAY-2010 P515395 ======= ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515395 ====== ND ND ND ND ND ND ND ND	JUN-2010 P522781 ======= ND ND ND ND ND ND ND	TCDD JUN-2010 P522781 ====== ND
Analytes ====================================	=== 125 123 113 98 111 137 247 115 140	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100 0.010 0.001 0.001	APR-2010 P513471 ======== ND ND ND ND ND ND ND	TCDD APR-2010 P513471 ======== ND	MAY-2010 P515395 ======= ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515395 ND	JUN-2010 P522781 ======= ND ND ND ND ND ND ND ND	TCDD JUN-2010 P522781 ====================================
Analytes 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF	=== 125 123 113 98 111 137 247 115 140 118	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.100 0.010 0.001 0.001 0.100 0.050	APR-2010 P513471 ======== ND ND ND ND ND ND ND ND	TCDD APR-2010 P513471 ======== ND	MAY-2010 P515395 ======== ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515395 ND	JUN-2010 P522781 ======== ND ND ND ND ND ND ND ND ND	TCDD JUN-2010 P522781 ====================================
Analytes ====================================	=== 125 123 113 98 111 137 247 115 140 118 147 107	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.001 0.001 0.050 0.500	APR-2010 P513471 ====================================	TCDD APR-2010 P513471 ======== ND	MAY-2010 P515395 ======== ND ND ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515395 ND	JUN-2010 P522781 ======== ND ND ND ND ND ND ND ND ND ND	TCDD JUN-2010 P522781 ====================================
Analytes ====================================	=== 125 123 113 98 111 137 247 115 140 118 147 107	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.001 0.001 0.050 0.500 0.100	APR-2010 P513471 ND	TCDD APR-2010 P513471 ====================================	MAY-2010 P515395 ======== ND ND ND ND ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515395 ND	JUN-2010 P522781 ======== ND ND ND ND ND ND ND ND ND ND ND	TCDD JUN-2010 P522781 ====================================
Analytes ====================================	=== 125 123 113 98 111 137 247 115 140 118 147 107 152 148	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.010 0.050 0.500 0.100 0.100 0.100	APR-2010 P513471 ====================================	TCDD APR-2010 P513471 ====================================	MAY-2010 P515395 ======== ND ND ND ND ND ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515395 ======== ND	JUN-2010 P522781 ======== ND ND ND ND ND ND ND ND ND ND ND ND	TCDD JUN-2010 P522781 ====================================
Analytes ====================================	=== 125 123 113 98 111 137 247 115 140 118 147 107 152 148 90	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.010 0.050 0.500 0.100 0.100 0.100 0.100	APR-2010 P513471 ====================================	TCDD APR-2010 P513471 ====================================	MAY-2010 P515395 ======== ND ND ND ND ND ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515395 ======== ND	JUN-2010 P522781 ======== ND ND ND ND ND ND ND ND ND ND ND ND ND	TCDD JUN-2010 P522781 ====================================
Analytes ====================================	=== 125 123 113 98 111 137 247 115 140 118 147 107 152 148 90 166	PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L	1.000 0.500 0.100 0.100 0.100 0.010 0.010 0.010 0.050 0.500 0.100 0.100 0.100	APR-2010 P513471 ====================================	TCDD APR-2010 P513471 ====================================	MAY-2010 P515395 ======== ND ND ND ND ND ND ND ND ND ND ND ND ND	TCDD MAY-2010 P515395 ======== ND	JUN-2010 P522781 ======== ND ND ND ND ND ND ND ND ND ND ND ND	TCDD JUN-2010 P522781 ====================================

Above are permit required CDD/CDF isomers. nd= not detected

NA= not analyzed NS= not sampled

Method: SW8280A				INFLUENT	INFLUENT
					TCDD
				JUL-2010	JUL-2010
Analytes	MDL	Units	Equiv.	P525978	P525978
	===	=======	=====	========	========
2,3,7,8-tetra CDD	125	PG/L	1.000	ND	ND
1,2,3,7,8-penta CDD	123	PG/L	0.500	ND	ND
1,2,3,4,7,8_hexa_CDD	113	PG/L	0.100	ND	ND
1,2,3,6,7,8-hexa CDD	98	PG/L	0.100	ND	ND
1,2,3,7,8,9-hexa CDD	111	PG/L	0.100	ND	ND
1,2,3,4,6,7,8-hepta CDD	137	PG/L	0.010	ND	ND
octa CDD	247	PG/L	0.001	ND	ND
2,3,7,8-tetra CDF	115	PG/L	0.100	ND	ND
1,2,3,7,8-penta CDF	140	PG/L	0.050	ND	ND
2,3,4,7,8-penta CDF	118	PG/L	0.500	ND	ND
1,2,3,4,7,8-hexa CDF	147	PG/L	0.100	ND	ND
1,2,3,6,7,8-hexa CDF	107	PG/L	0.100	ND	ND
1,2,3,7,8,9-hexa CDF	152	PG/L	0.100	ND	ND
2,3,4,6,7,8-hexa CDF	148	PG/L	0.100	ND	ND
1,2,3,4,6,7,8-hepta CDF	90	PG/L	0.010	ND	ND
1,2,3,4,7,8,9-hepta CDF	166	PG/L	0.010	ND	ND
octa CDF	222	PG/L	0.001	ND	ND

Method: EPA1613				INFLUENT	INFLUENT TCDD	INFLUENT	INFLUENT TCDD	INFLUENT	INFLUENT TCDD
				03-AUG-2010	03-AUG-2010	03-SEP-2010	03-SEP-2010	05-OCT-2010	05-OCT-2010
Analytes	MDL	Units	Equiv.	P524953	P524953	P530842	P530842	P533510	P533510
=======================================	====	=======	=====	========	========	========	========	========	========
2,3,7,8-tetra CDD	.212	PG/L	1.000	ND	ND	ND	ND	ND	ND
1,2,3,7,8-penta CDD	.302	PG/L	0.500	ND	ND	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.328	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.381	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.351	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.495	PG/L	0.010	20.0	0.200	17.0	0.170	15.0	0.150
octa CDD	1.02	PG/L	0.001	130.0	0.130	190.0	0.190	130.0	0.130
2,3,7,8-tetra CDF	.112	PG/L	0.100	ND	ND	1.10	0.110	ND	ND
1,2,3,7,8-penta CDF	.219	PG/L	0.050	ND	ND	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.232	PG/L	0.500	ND	ND	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.162	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	.167	PG/L	0.100	ND	ND	3.40	0.340	4.50	0.450
1,2,3,7,8,9-hexa CDF	.185	PG/L	0.100	ND	ND	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	.185	PG/L	0.100	ND	ND	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	.251	PG/L	0.010	4.20	0.042	6.50	0.065	ND	ND
1,2,3,4,7,8,9-hepta CDF	.28	PG/L	0.010	ND	ND	ND	ND	ND	ND
octa CDF	.451	PG/L	0.001	8.70	0.009	17.0	0.017	ND	ND

Above are permit required CDD/CDF isomers.

nd= not detected

NA= not analyzed NS= not sampled

Method: EPA1613				INFLUENT	INFLUENT TCDD	INFLUENT	INFLUENT TCDD
				06-NOV-2010	06-NOV-2010	16-DEC-2010	16-DEC-2010
Analytes	MDL	Units	Equiv.	P539667	P539667	P544955	P544955
=======================================	====	=======	=====	========			========
2,3,7,8-tetra CDD	.212	PG/L	1.000	ND	ND	ND	ND
1,2,3,7,8-penta CDD	.302	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8_hexa_CDD	.328	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDD	.381	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8,9-hexa CDD	.351	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDD	.495	PG/L	0.010	18.0	0.180	23.0	0.230
octa CDD	1.02	PG/L	0.001	200.0	0.200	290.0	0.290
2,3,7,8-tetra CDF	.112	PG/L	0.100	ND	ND	ND	ND
1,2,3,7,8-penta CDF	.219	PG/L	0.050	ND	ND	ND	ND
2,3,4,7,8-penta CDF	.232	PG/L	0.500	ND	ND	ND	ND
1,2,3,4,7,8-hexa CDF	.162	PG/L	0.100	ND	ND	ND	ND
1,2,3,6,7,8-hexa CDF	.167	PG/L	0.100	2.60	0.260	3.10	0.310
1,2,3,7,8,9-hexa CDF	.185	PG/L	0.100	ND	ND	ND	ND
2,3,4,6,7,8-hexa CDF	.185	PG/L	0.100	ND	ND	ND	ND
1,2,3,4,6,7,8-hepta CDF	.251	PG/L	0.010	7.0	0.070	6.70	0.067
1,2,3,4,7,8,9-hepta CDF		PG/L	0.010	ND	ND	ND	ND
octa CDF	.451	PG/L	0.001	19.0	0.019	18.0	0.018

Above are permit required CDD/CDF isomers. nd= not detected

NA= not analyzed NS= not sampled

2010 Point Loma Treatment Plant Total Coliforms

The following are the monthly Total Coliform results of the Point Loma Treatment Plant Effluent. The value is stated in terms of Most Probable Number (MPN) per 100 milliliters of sample.

SAMPLE SOURCE (Pt. Loma Treatment Plant Effluent)

AMPLE SOURCE (Ft. Loille	i Treatment Frant Emilier
DATE	TOTAL
	COLIFORM
	(MPN Index/100ml)
January 5, 2010	4.900,000
February 26, 2010	4,900,000
March 17, 2010	4,600,000
April 8, 2010	7,900,000
May 6, 2010	3,300,000
June 1, 2010	79,000,000
July 22, 2010	4,900,000
August 2010	19,866,667
September 2010	9,200,000
October 2010	5,600,000
November 2010	10,057,500
December 2010	2,156,000
Average	13,770,924

Influent and Effluent Data Summary 2.65

2010 **Point Loma Treatment Plant** Coliforms

The following are the monthly Coliform results of the Point Loma Treatment Plant Effluent. The value is stated in terms of Most Probable Number (MPN) per 100 milliliters for the total and fecal coliform densities and in terms of Colony Forming Units (CFU) per 100 millilitiers for enterococcus.

DATE	COLIF (MPN Ind	ENTEROCOCCUS** (CFU/100 ml)	
	Total	Fecal	
August 2, 2010	22,000,000	3,300,000	100,000
August 5, 2010	3,300,000	330,000	18,000e
August 12, 2010	4,600,000	1,300,000	54,000
August 18, 2010	3,300,000	790,000	30,000
August 24, 2010	7,000,000	1,300,000	37,000
August 30, 2010	79,000,000	2,300,000	68,000e
Average	19.866.667	1.553.333	30,250

DATE	COLIF (MPN Ind	ENTEROCOCCUS** (CFU/100 ml)	
	Total	Fecal	
September 9, 2010	3,300,000	3,300,000	200,000
September 17, 2010	23,000,000	2,200,000	21,000
September 23, 2010	3,500,000	490,000	16,000
September 29, 2010	7,000,000	3,100,000	48,000
Average	9,200,000	2,272,500	57,000

DATE	COLII (MPN Inc	ENTEROCOCCUS** (CFU/100 ml)	
	Total	Fecal	7
October 5, 2010	7,900,000	2,300,000	47,000
October 11, 2010	1,700,000	460,000	18,000e
October 19, 2010	7,900,000	3,300,000	39,000
Octoer 29, 2010	4,900,000	1,300,000	54,000
Average	5,600,000	1,840,000	46,500

^{*}Multiple tube Fermentation Technique (MTF) SM 9221B (Total Coliform) & SM9221E (Fecal coliform)

^{**}Membrane Filtration (MF) – EPA 1600

[&]quot;e", estimated value, plate count falls outside the acceptable range per EPA method guidelines.

DATE	COLIF (MPN Ind	ENTEROCOCCUS** (CFU/100 ml)	
	Total	Fecal	
November 4, 2010	22,000,000	3,500,000	220,000
November 10, 2010	330,000	130,000	3,000e
November 16, 2010	4,900,000	2,200,000	12,000e
November 22, 2010	13,000,000	1,300,000	42,000
Average	10,057,500	1,782,500	42,000

DATE	COLIF (MPN Ind	ENTEROCOCCUS** (CFU/100 ml)	
	Total	Fecal	
December 2, 2010	1,300,000	1,300,000	LA
December 8, 2010	7,900,000	490,000	13,000e
December 16, 2010	170,000	<18,000	1,000e
December 22, 2010	1,300,000	110,000	140,000
December 28, 2010	110,000	20,000	<1,000
Average	2,156,000	65,000	70,500

^{*}Multiple tube Fermentation Technique (MTF) SM 9221B (Total Coliform) & SM9221E (Fecal coliform)

^{**}Membrane Filtration (MF) – EPA 1600

[&]quot;e", estimated value, plate count falls outside the acceptable range per EPA method guidelines.

LA: Lab Accident

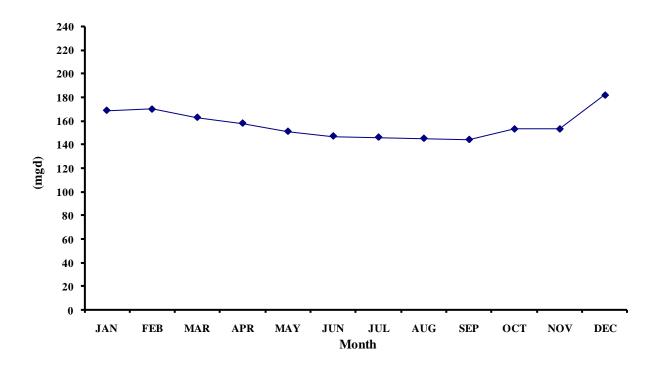
POINT LOMA WASTEWATER TREATMENT PLANT From 01-JAN-2010 To 31-DEC-2010

	Total Hardne		Calciu Hardne		Magne: Hardn		Calci	um	Magnes	sium
MDL:	.4	mg/L	.1	mg/L	.4	mg/L	. 04	mg/L	.1	mg/L
	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.
=========	=======		=======		=======		=======		========	
JANUARY -2010	446	438	218	217	228	221	87	87	55	54
FEBRUARY -2010	445	452	219	222	226	230	88	89	55	56
MARCH -2010	457	445	221	217	236	228	89	87	57	55
APRIL -2010	478	477	238	238	241	240	95	95	58	58
MAY -2010	449	453	214	215	235	238	86	86	57	58
JUNE -2010	420	429	203	207	217	222	81	83	53	54
JULY -2010	449	449	209	209	240	240	84	84	58	58
AUGUST -2010	458	471	223	229	235	243	89	92	57	59 55
SEPTEMBER-2010	447	444	221	219	226	226	89	88	55	55 56
OCTOBER -2010 NOVEMBER -2010	436 470	440 463	207 231	209 228	229 239	231 234	83 93	84 91	56 58	56 57
DECEMBER -2010	496	493	244	243	252	250	98	97	61	61
======================================	========		========		=======		=======		========	
Average:	454	455	221	221	234	234	89	89	57	57
	Alkali	Inity	Total		Total	Vol.	Conduct:	ivity	Fluori	ide
			Solid		Soli					
MDL:	20	mg/L	10	mg/L	100	mg/L		nhos/cm	.05	mg/L
	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.
7.4NUARY 2010	========		2050		========		2060			
JANUARY -2010	302	285	2060	1770	530	275	2960	2990	0.87	0.99
FEBRUARY -2010	293	279	1940	1700 1700	525 522	300	2860	2880	0.80	0.68
MARCH -2010 APRIL -2010	342 309	261 295	2060	1810	522 522	312 293	2910 3010	2850 3030	0.82 0.91	0.84 0.93
MAY -2010	288	283	2060 2110	1790	562	279	3010	3070	0.89	0.93
JUNE -2010	275	268	1890	1660	482	279	2830	2860	0.56	0.71
JULY -2010	293	282	2100	1820	567	314	3040	3060	0.53	0.63
AUGUST -2010	305	301	2020	1720	512	280	3000	3020	0.90	0.93
SEPTEMBER-2010	298	287	2080	1850	500	297	3110	3120	0.72	0.83
OCTOBER -2010	284	272	2000	1750	529	295	2930	2980	0.88	0.85
NOVEMBER -2010	302	288	2050	1760	528	285	2980	2990	0.64	0.72
DECEMBER -2010	309	295	2120	1830	520	279	3050	3060	0.92	0.88
===========	========		========		=======		=======		========	
Average:	300	283	2041	1763	525	291	2974	2993	0.79	0.83
	Chlori	de	Bromi	i de	Sulfa	ate	Nitra	ate	Orth	00
	C.1.201 2	·uc	D1 01112	-uc	3411	acc	11201		Phospha	
MDL:	7	mg/L	.1	mg/L	9	mg/L	.04	mg/L	.2	mg/L
	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.
==========	========	=====	========		=======	======	=======	======	========	=====
JANUARY -2010	587	582	1.53	1.46	272	264	0.15	0.24	4.42	3.09
FEBRUARY -2010	563	587	1.25	1.29	244	239	0.20	0.19	6.70	5.02
MARCH -2010	592	594	1.45	1.36	259	249	0.11	0.25	4.97	4.27
APRIL -2010	600	618	1.57	1.57	305	298	0.17	0.35	3.99	3.09
MAY -2010	629	648	1.57	1.55	249	241	0.15	0.08	7.12	5.83
JUNE -2010	534	587	1.24	1.40	227	225	0.11	0.51	4.88	3.28
JULY -2010	638	663	1.58	1.53	235	229	0.09	0.32	6.35	5.53
AUGUST -2010	599	638	1.44	1.63	261	256	0.17	0.36	4.50	3.35
SEPTEMBER-2010	608	623	1.41	1.56	300	296	0.18	0.65	4.91	4.35
OCTOBER -2010	600	625	1.65	1.72	240	231	0.09	0.57	5.49	4.79
NOVEMBER -2010	586	604	1.35	1.40	257	252	0.07	0.05	6.02	4.61
DECEMBER -2010	606	622	1.68	1.58	306	299	0.21	0.29	4.17	3.01
A	========		1 40		262				======================================	
Average:	595	616	1.48	1.50	263	257	0.14	0.32	5.29	4.19

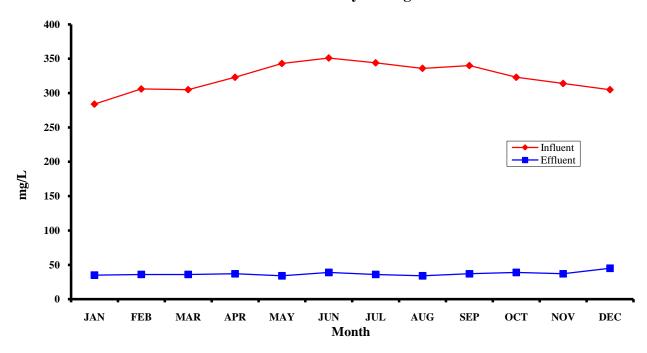
ND=not detected; NS=not sampled; NA=not analyzed

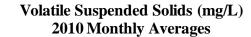
POINT LOMA WASTEWATER TREATMENT PLANT From 01-JAN-2010 To 31-DEC-2010

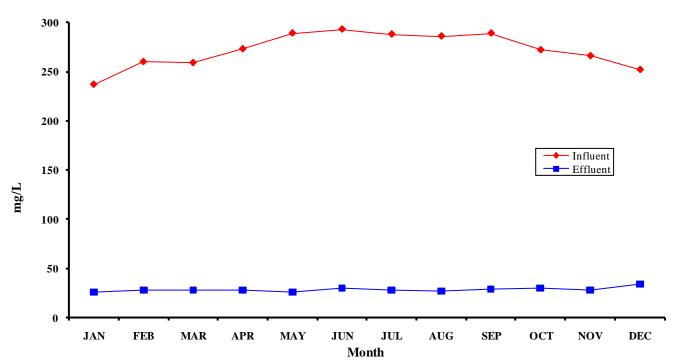
	Lithium		Sodium		Potassium		Chemical Oxygen Demand			Soluble BOD	
MDL:	.002	mg/L	1	mg/L	.3	mg/L	18	mg/L	2	mg/L	
	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	
=========	=======		=======		=======		========		=======		
JANUARY -2010	0.046	0.047	366	360	24.6	24.2	549	206	69	64	
FEBRUARY -2010	0.043	0.045	369	385	27.7	27.7	591	225	79	74	
MARCH -2010	0.039	0.039	369	370	24.6	24.6	577	222	65	64	
APRIL -2010	0.049	0.050	380	388	25.1	25.0	589	212	70	68	
MAY -2010	0.046	0.048	395	409	28.8	29.0	537	162	77	74	
JUNE -2010	0.039	0.041	349	368	25.3	25.8	601	240	73	70	
JULY -2010	0.042	0.042	403	415	29.5	29.5	600	205	77	70	
AUGUST -2010	0.045	0.046	392	411	28.3	28.5	602	249	77	76	
SEPTEMBER-2010	0.051	0.048	358	366	24.0	23.8	525	213	65	70	
OCTOBER -2010	0.041	0.042	380	391	27.4	27.4	503	186	70	67	
NOVEMBER -2010	0.048	0.049	395	399	28.3	28.4	627	231	75	70	
DECEMBER -2010	0.047	0.048	391	400	25.7	25.8	562	215	65	68	
<pre> Average:</pre>	0.04	0.05	379	389	26.6	26.6	====== 572	===== 214	====== 72	 70	
			-								
	Total Disolved Solids		Floatables		Turbidity		01	E	Barium		
MDL:	28	mg/L	1.4	mg/L	.13	NTU	47	ug/L	.039	ug/L	
	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	
=========	=======	======	=======		========	=====	========	=====	=======		
JANUARY -2010	1720	1730	<1.4	<1.4	136	36	1040	189	109	47	
FEBRUARY -2010	1640	1650	<1.4	ND	136	41	635	143	78	41	
MARCH -2010	1560	1550	<1.4	ND	129	37	1040	198	93	42	
APRIL -2010	1720	1730	1.4	ND	136	34	1090	218	116	48	
MAY -2010	1710	1710	<1.4	ND	135	41	964	144	96	40	
JUNE -2010	1600	1610	ND	ND	134	38	1050	196	95	40	
JULY -2010	1730	1740	<1.4	ND	134	40	918	190	88	41	
AUGUST -2010	1690	1700	<1.4	ND	136	37	1030	168	106	40	
SEPTEMBER-2010	1770	1780	<1.4	ND	138	37	1020	179	105	45	
OCTOBER -2010	1640	1650	<1.4	ND	131	39	1070	173	95	39	
NOVEMBER -2010	1680	1680	<1.4	ND	138	40	1160	145	107	44	
DECEMBER -2010	1670	1680	1.5	ND	140	36	959	187	99	46	
<pre> Average:</pre>	======= 1678	===== 1684	0.2	0.0	135	===== 38	======= 998	===== 178	======= 99	43	
Average.	10/0	1004	0.2	0.0	133	30	556	170	33	73	
	Boron		Cobalt		Molybdenum		Manganese		Vanadium		
MDL:	7	ug/L	.85	ug/L	.89	ug/L	. 24	ug/L	.64	ug/L	
	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	Inf.	Eff.	
=======================================	=======		=======	=====	========		========	=====	========		
JANUARY -2010	384	412	1.03	<0.85	11	8	123	106	4.66	1.64	
FEBRUARY -2010	417	393	<0.85	ND	9	7	106	105	2.32	ND	
MARCH -2010	376	390	1.24	<0.85	11	8	130	115	6.44	2.36	
APRIL -2010	412	379	1.43	<0.85	11	9	123	108	4.51	0.90	
MAY -2010	435	397	1.17	<0.85	12	9	120	112	3.85	1.15	
JUNE -2010	426	422	1.09	<0.85	9	7	109	107	4.00	1.42	
JULY -2010	445	452	<0.85	<0.85	11	8	105	100	2.71	<0.64	
AUGUST -2010	433	452	<0.85	ND 0.80	10	9	131	123	4.35	1.05	
SEPTEMBER-2010	387	393	1.46	0.89	10	9 11	119	106	4.22	1.15	
OCTOBER -2010	414	428 406	<0.85	ND	13	11	128	113	4.57	1.01	
NOVEMBER -2010	390 424	406 434	1.35 0.91	<0.85 <0.85	11 10	8 8	116 117	105 107	4.70 3.88	0.77	
DECEMBER -2010	424 =======		0.91		10		117 ======	107	3.88	1.13	
Average:	412	413	0.81	0.07	11	===== 8	119	109	4.18	1.05	
Average.	412	413	0.01	0.07	11	O	113	103	4.10	1.05	

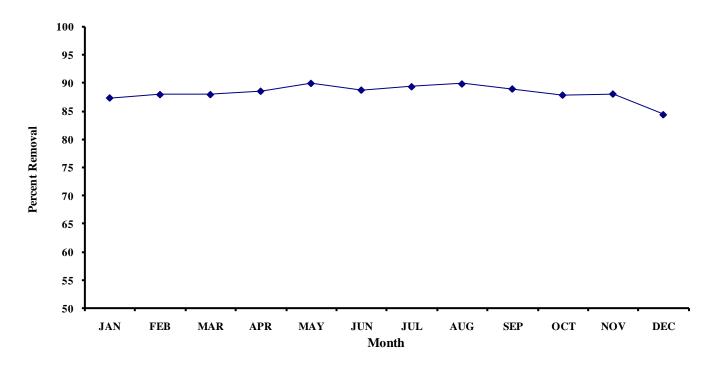

ND=not detected; NS=not sampled; NA=not analyzed

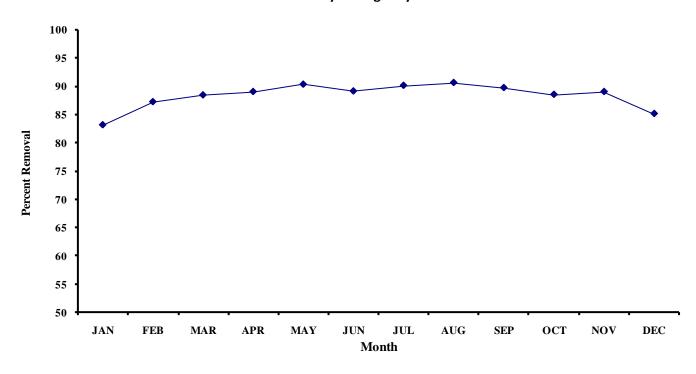
D. Influent and Effluent Graphs

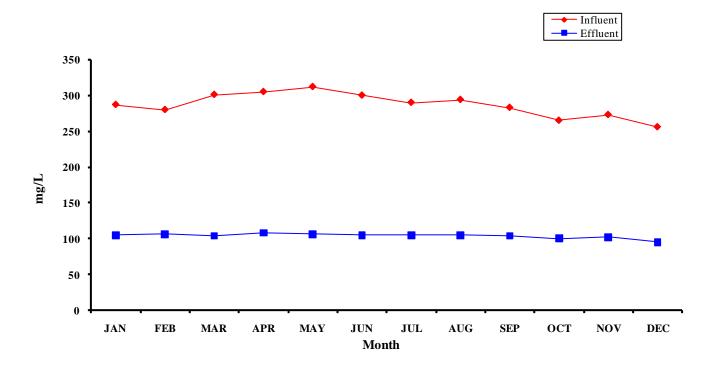

Graphs of monthly averages for permit parameters with measurable concentration averages.

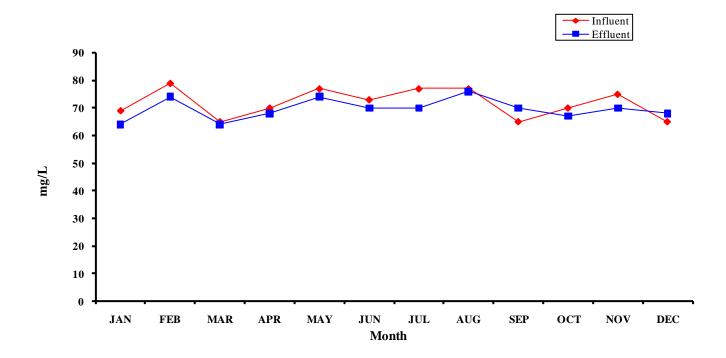

Where possible, the influent and effluent values of a given parameter have been included on the same graph so that removals and other relationships are readily apparent. Please note that many of the graphs are on expanded scales. That is, they may not go to zero concentrations but show, in magnified scale, that range of concentrations where variation takes place. This makes differences and some trends obvious that might normally not be noticed. However, it also provides the temptation to interpret minor changes or trends as being of more significance than they are. Frequent reference to the scales and the actual differences in concentrations is therefore necessary.

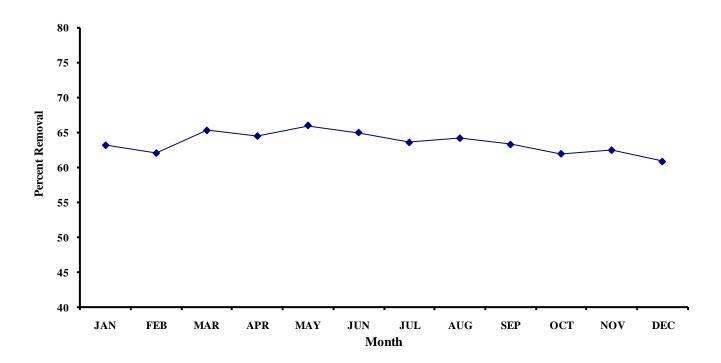

PLWWTP Flows (mgd) 2010 Monthly Averages

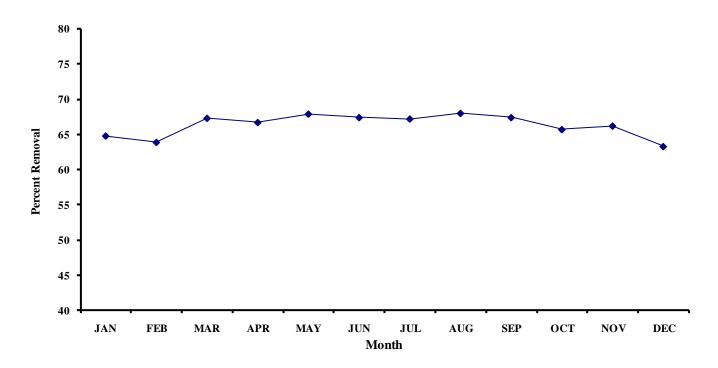

Total Suspended Solids (mg/L) 2010 Monthly Averages

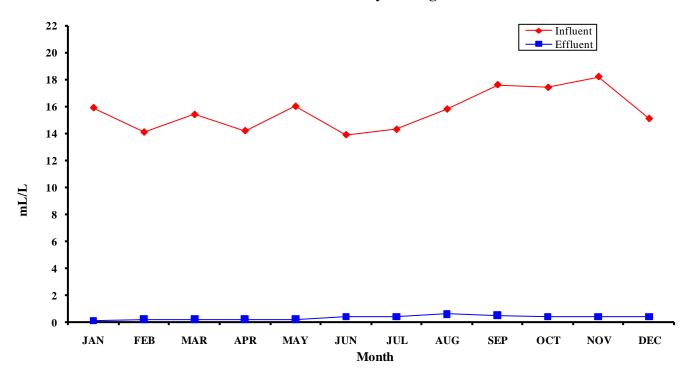


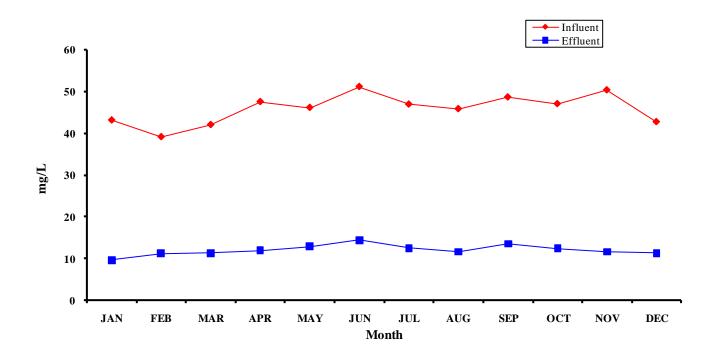

Total Suspended Solids (%) Removal 2010 Monthly Averages

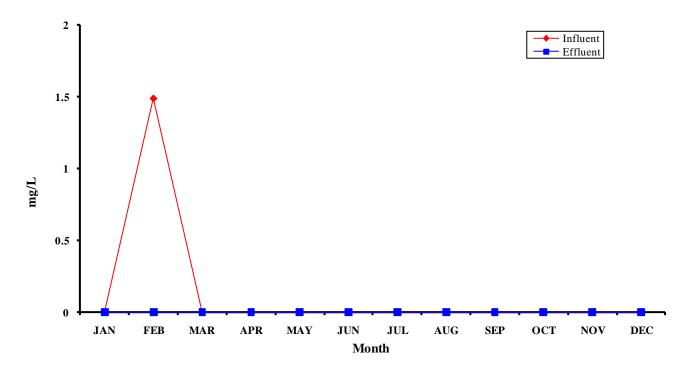

Total Suspended Solids (%) Removal 2010 Monthly Averages Systemwide

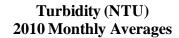

Biochemical Oxygen Demand 2010 Monthly Averages

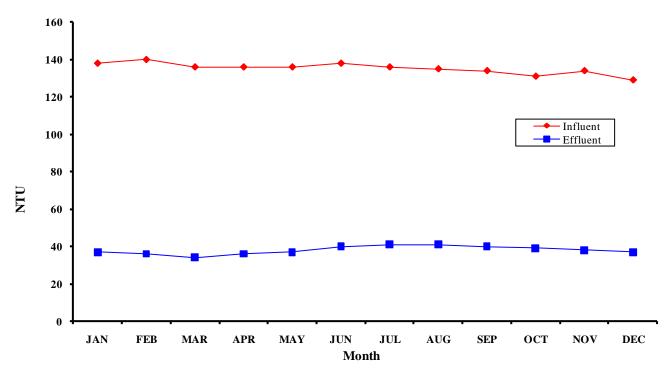

Soluble Biochemical Oxygen Demand 2010 Monthly Averages

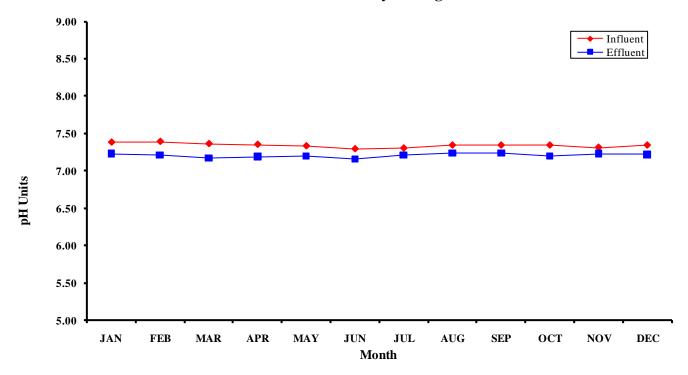

Biochemical Oxygen Demand (%) Removal 2010 Monthly Averages

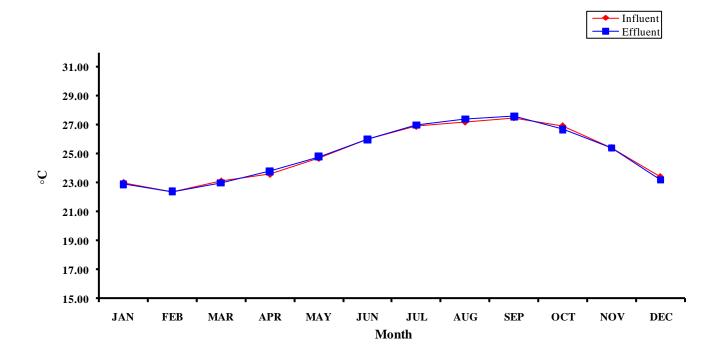

Biochemical Oxygen Demand (%) Removal 2010 Monthly Averages Systemwide

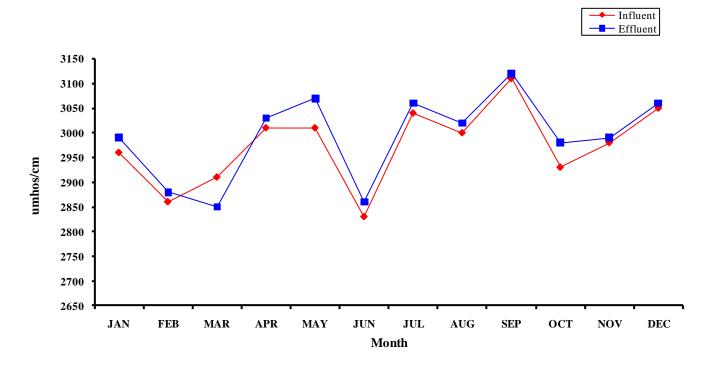

Settleable Solids (mL/L) 2010 Monthly Averages

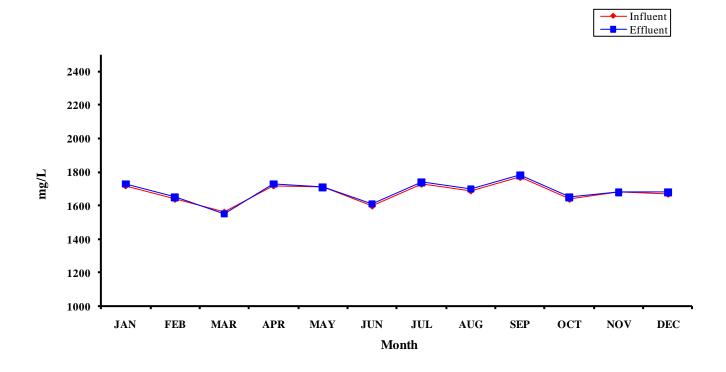


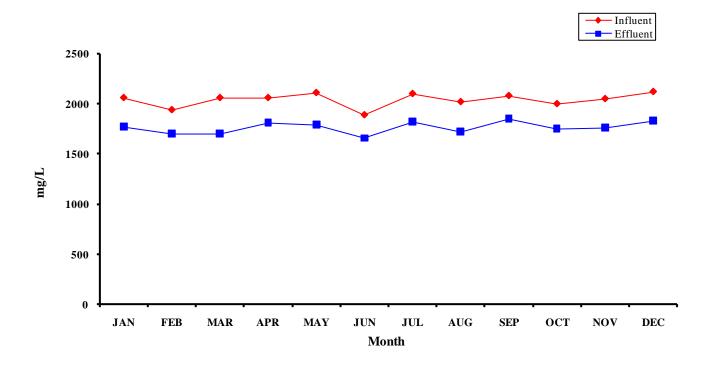

Hexane Extractable Material (mg/L) 2010 Monthly Averages

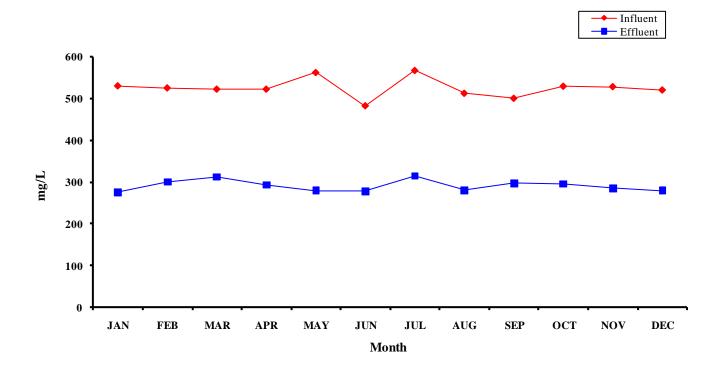

Floatables (mg/L) 2010 Monthly Averages

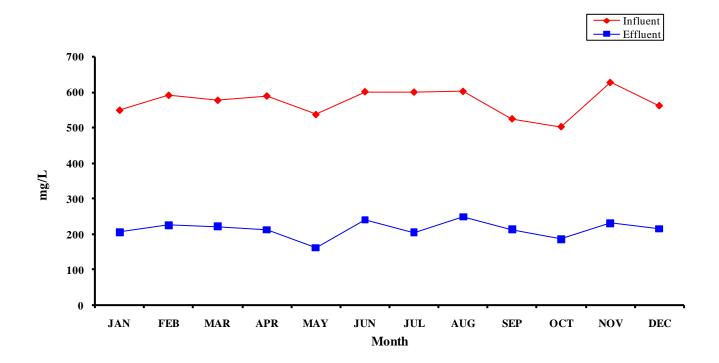


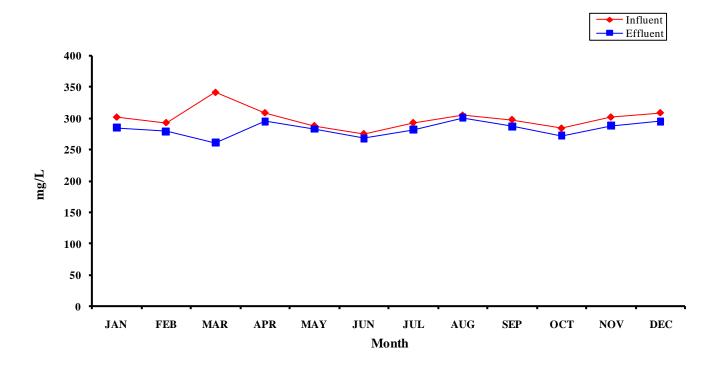

pH 2010 Monthly Averages

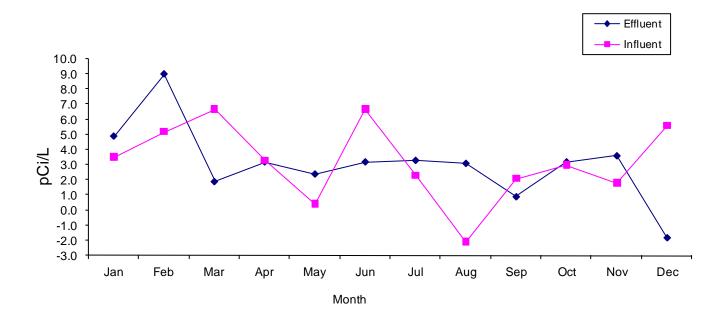

Temperature (°C) 2010 Monthly Averages

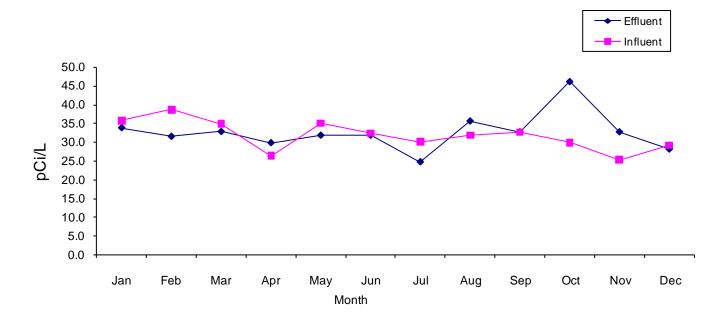

Conductivity (umhos/cm) 2010 Monthly Averages

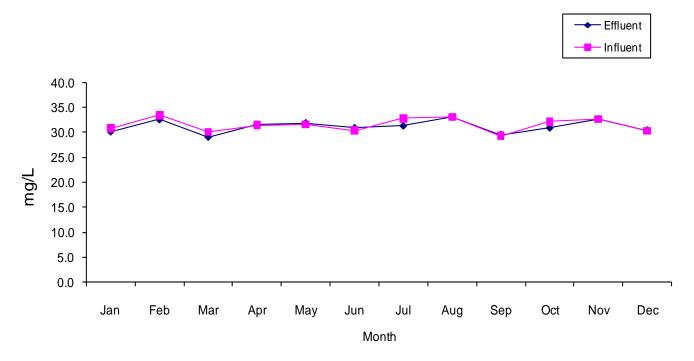

Total Dissolved Solids (mg/L) 2010 Monthly Averages

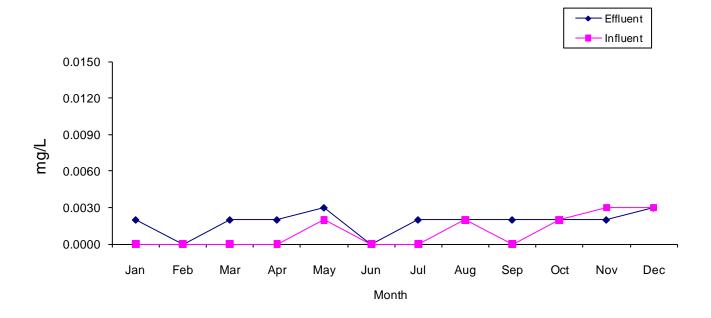

Total Solids (mg/L) 2010 Monthly Averages


Total Volatile Solids (mg/L) 2010 Monthly Averages

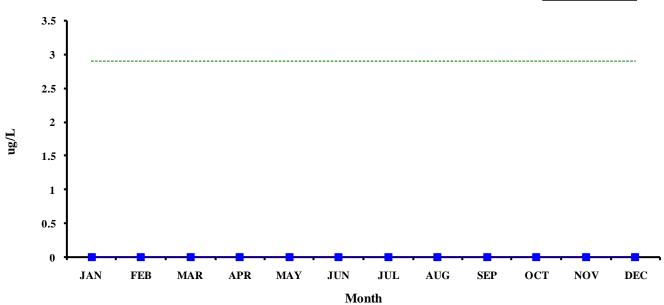

Chemical Oxygen Demand (mg/L) 2010 Monthly Averages

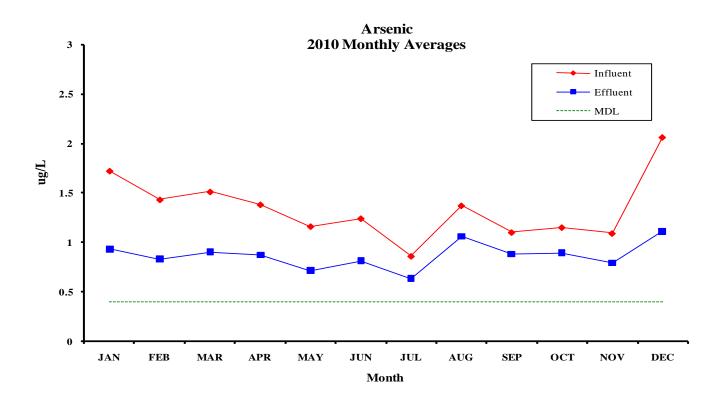

Alkalinity (mg/L) 2010 Monthly Averages

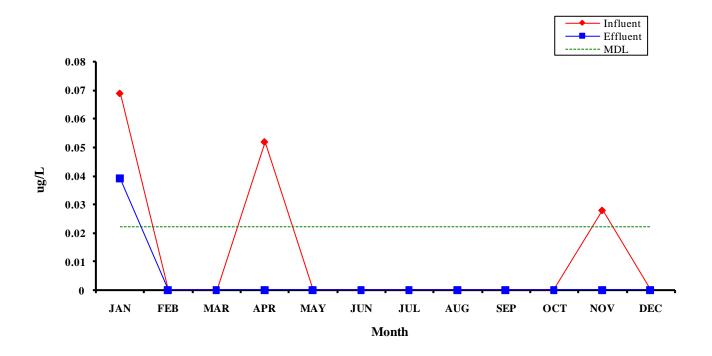

Point Loma Wastewater Treatment Plant 2010 Monthly Averages - Alpha Radiation

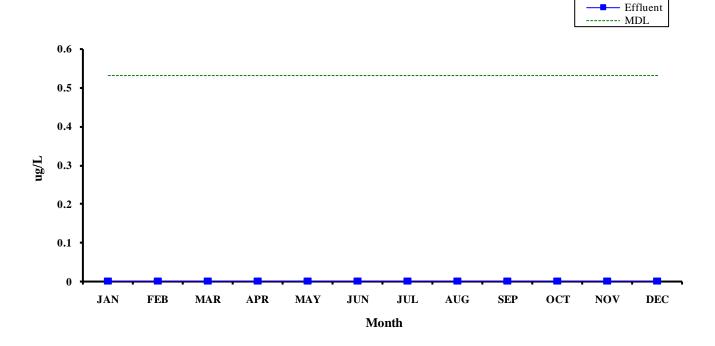

Point Loma Wastewater Treatment Plant 2010 Monthly Averages - Beta Radiation

Point Loma Wastewater Treatment Plant 2010 Monthly Averages - Ammonia-N

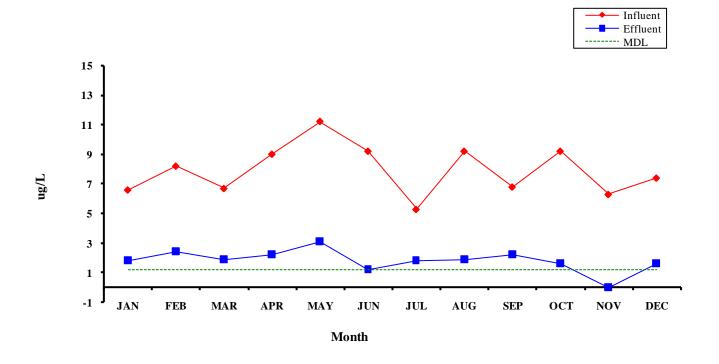



Point Loma Wastewater Treatment Plant 2010 Monthly Averages - Total Cyanides

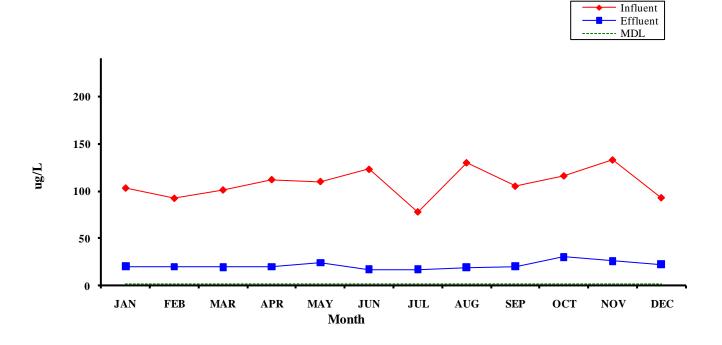

Antimony 2010 Monthly Averages



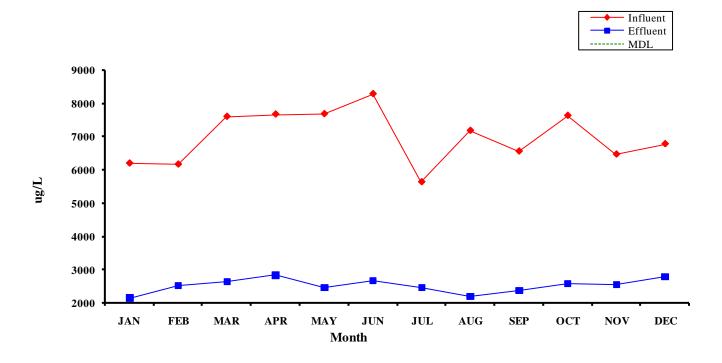
Beryllium 2010 Monthly Averages

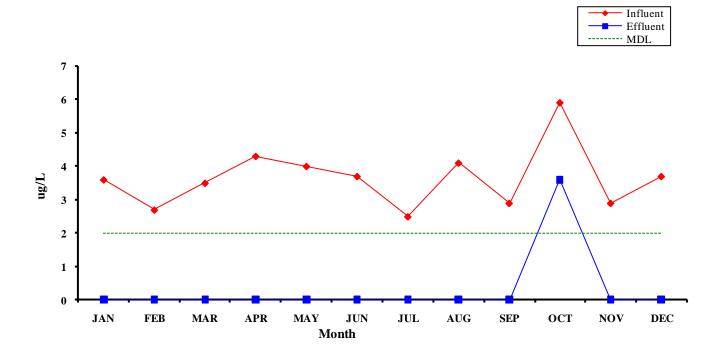


Cadmium 2010 Monthly Averages

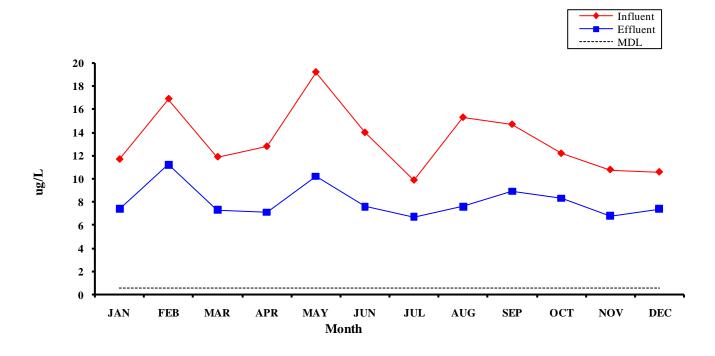


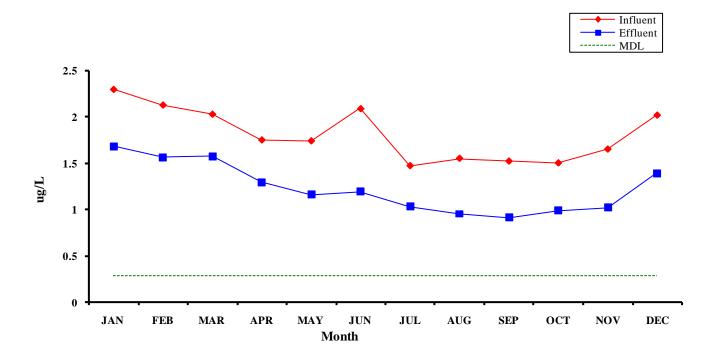
Influent

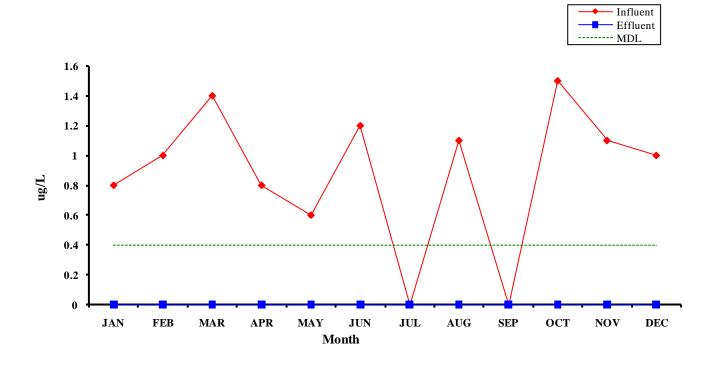

Chromium 2010 Monthly Averages

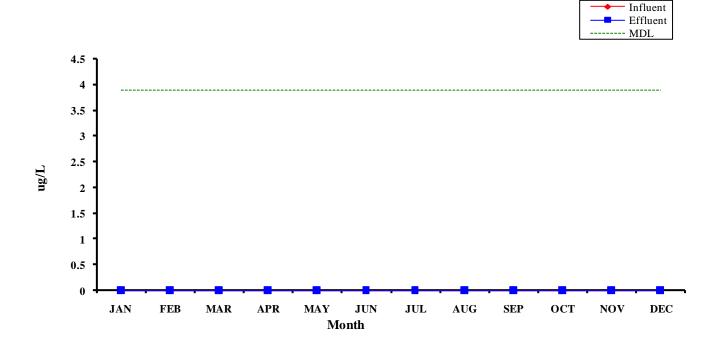

Copper 2010 Monthly Averages

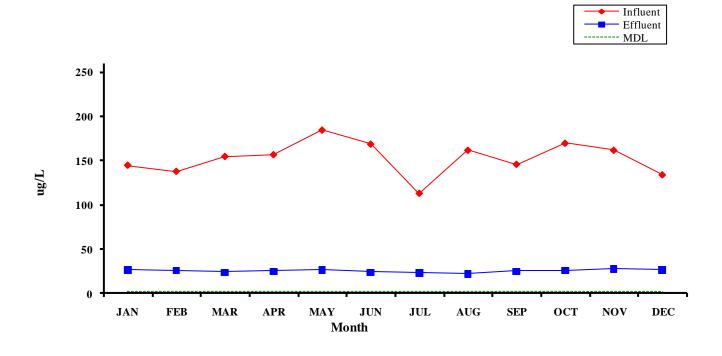
Iron 2010 Monthly Averages

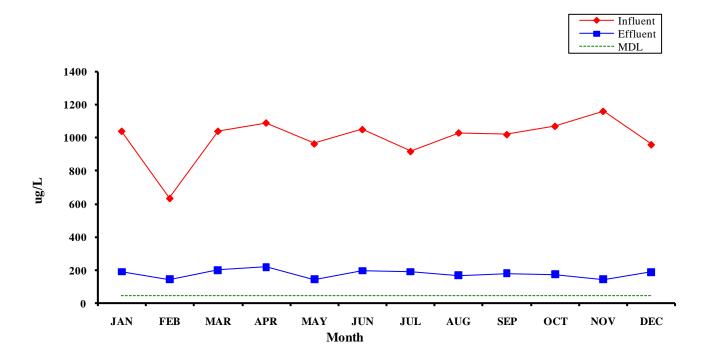

Lead 2010 Monthly Averages

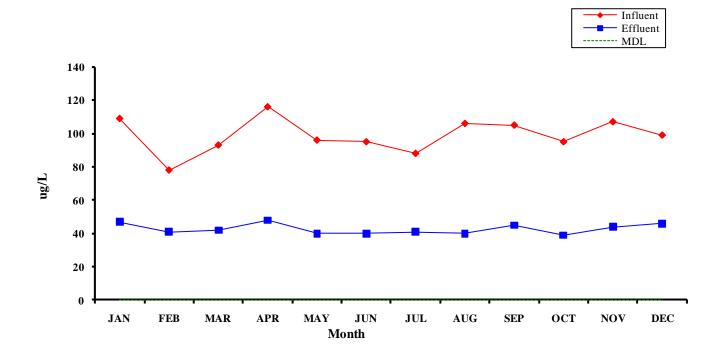

Mercury 2010 Monthly Averages

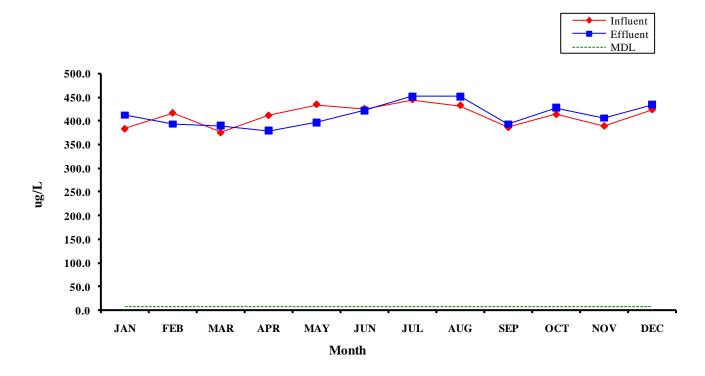

Nickel 2010 Monthly Averages

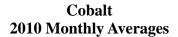

Selenium 2010 Monthly Averages

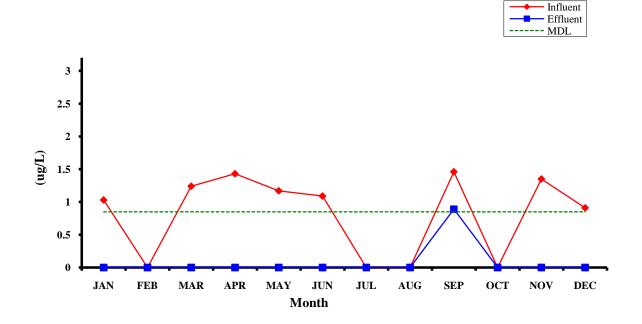

Silver 2010 Monthly Averages

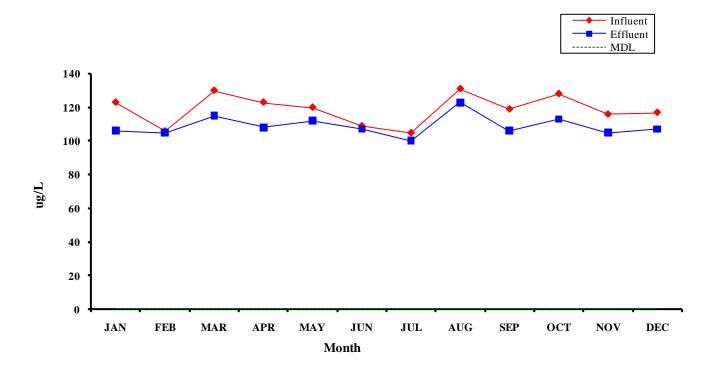

Thallium 2010 Monthly Averages

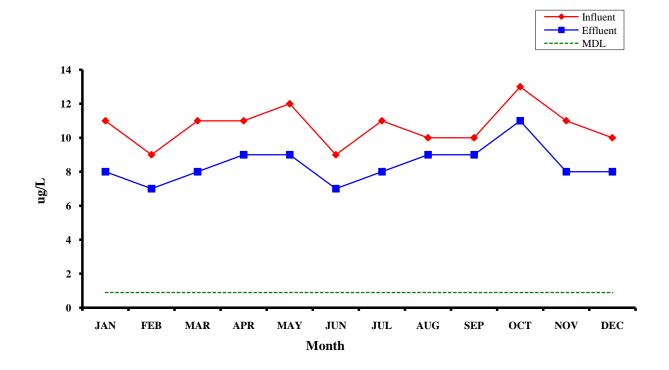

Zinc 2010 Monthly Averages

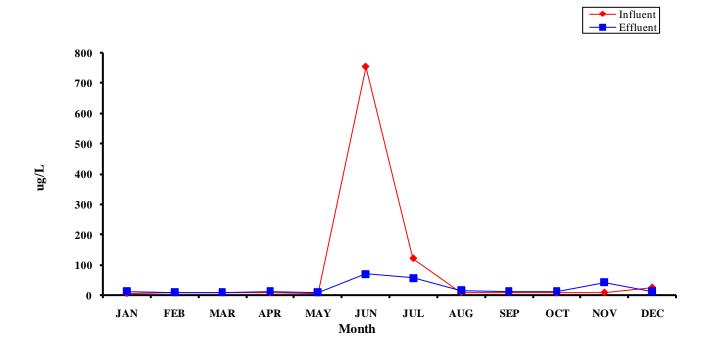

Aluminum 2010 Monthly Averages

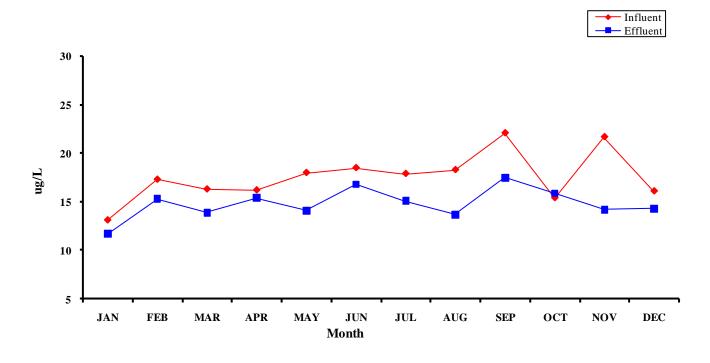


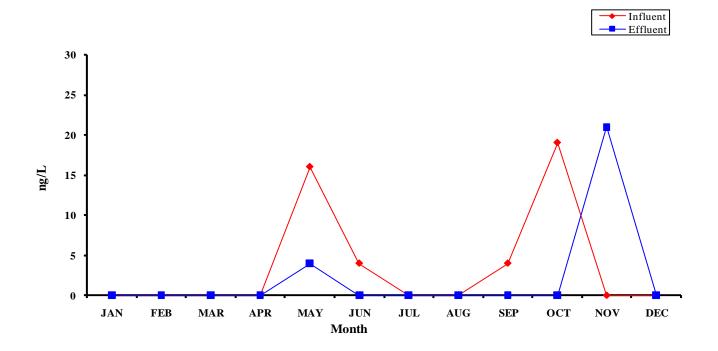

Barium 2010 Monthly Averages

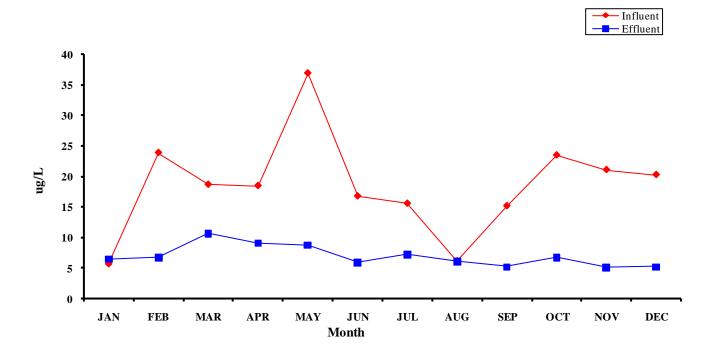

Boron 2010 Monthly Averages

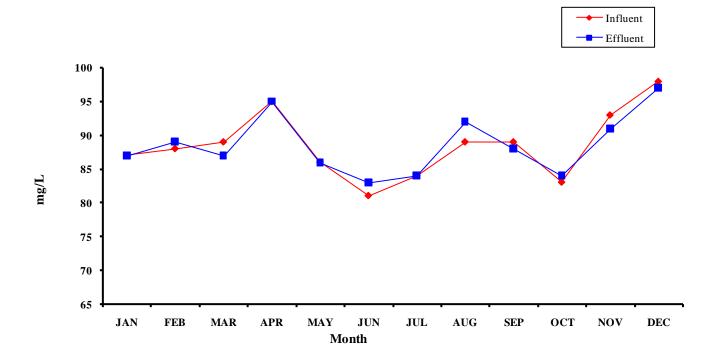


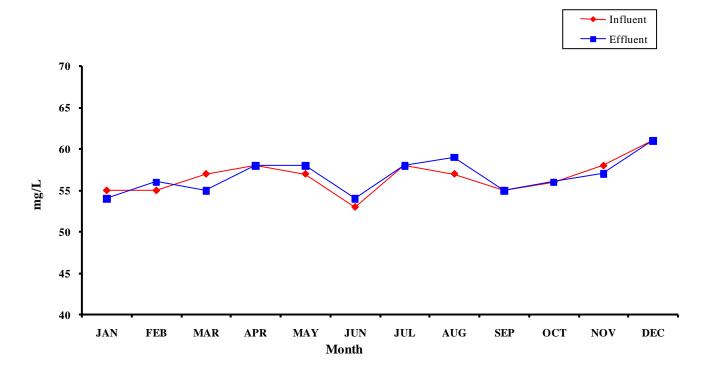

Manganese 2010 Monthly Averages

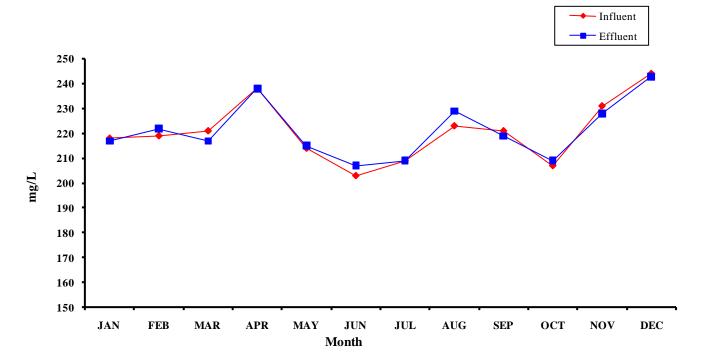

Molybdenum 2010 Monthly Averages

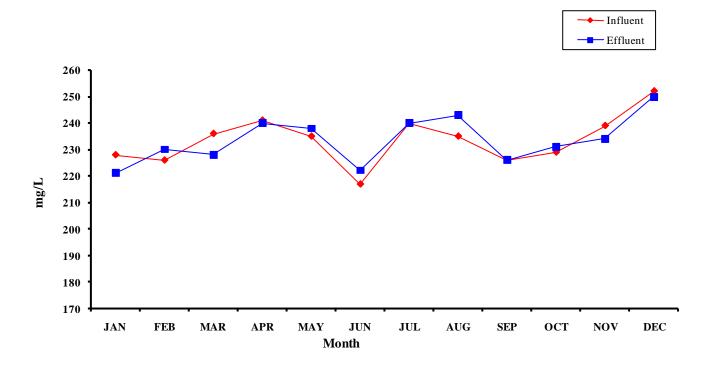

Purgeables 2010 Monthly Averages

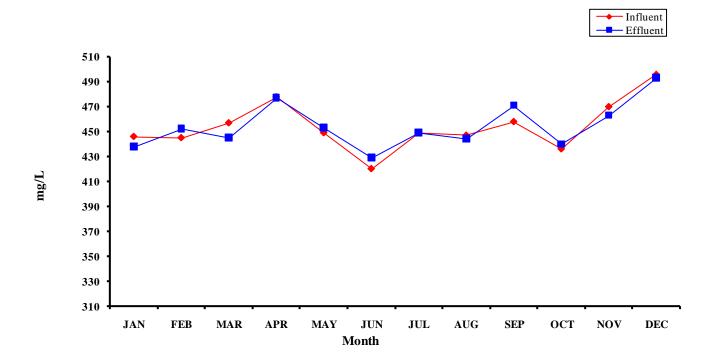

Phenols 2010 Monthly Averages

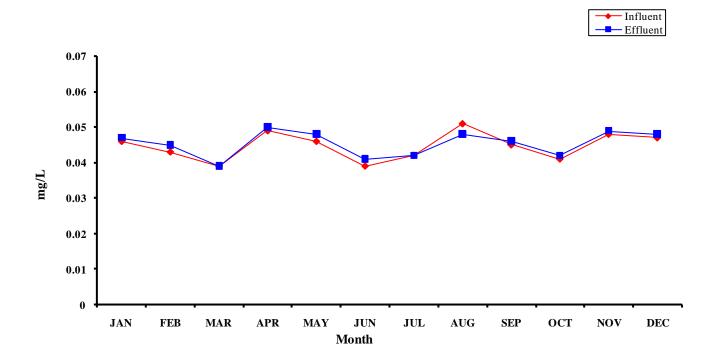

Total Chlorinated Hydrocarbons 2010 Monthly Averages

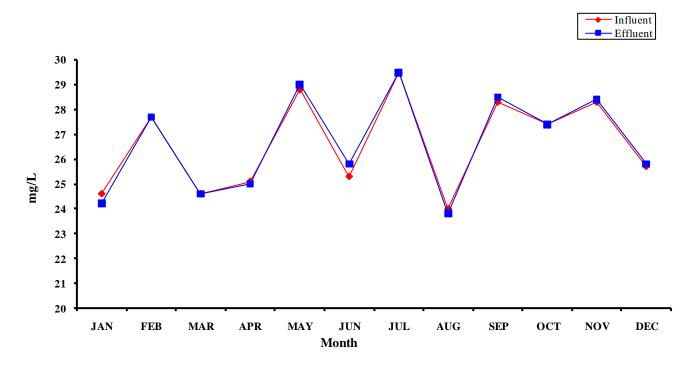

Base Neutrals 2010 Monthly Averages

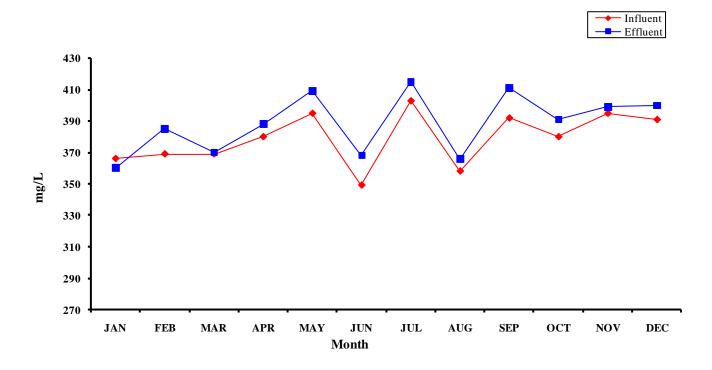

Calcium 2010 Monthly Averages

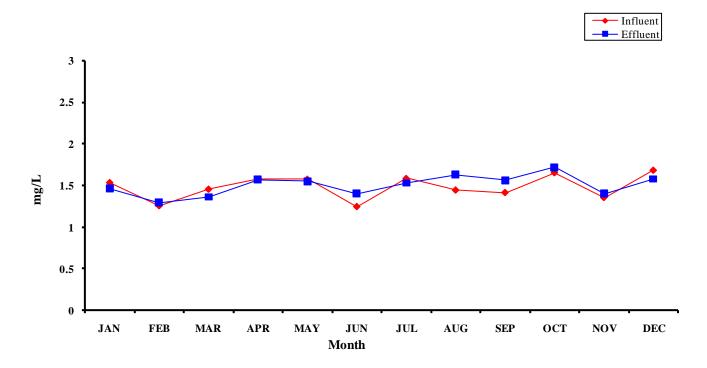

Magnesium 2010 Monthly Averages

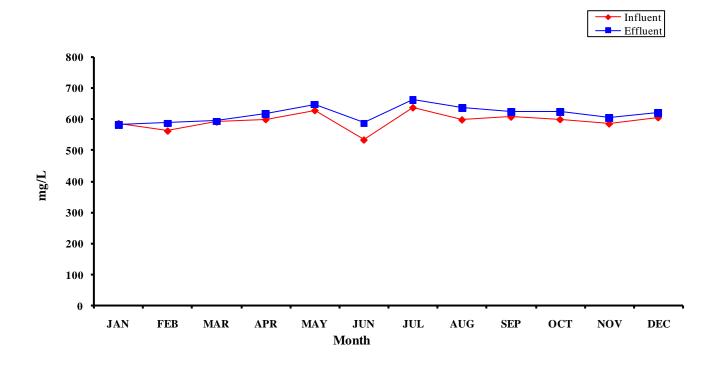

Calcium Hardness 2010 Monthly Averages


Magnesium Hardness 2010 Monthly Averages

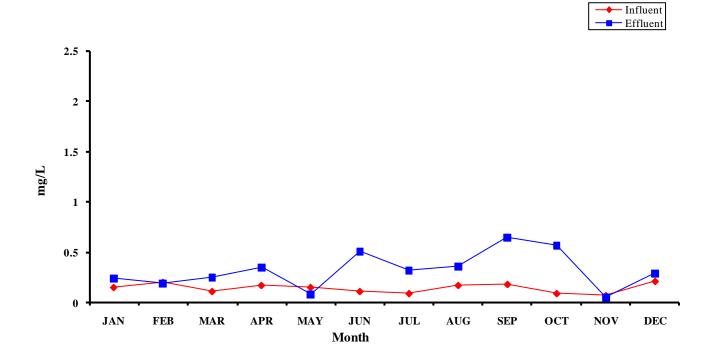

Total Hardness 2010 Monthly Averages

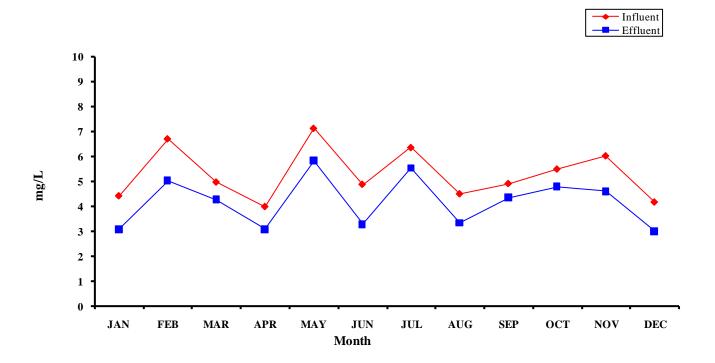

Lithium 2010 Monthly Averages

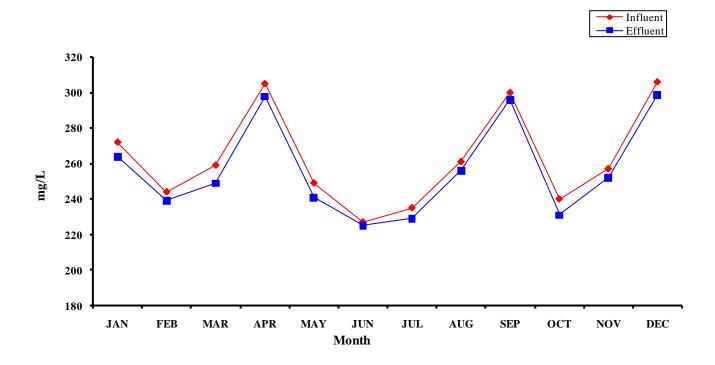

Potassium 2010 Monthly Averages


Sodium 2010 Monthly Averages

Bromide 2010Monthly Averages

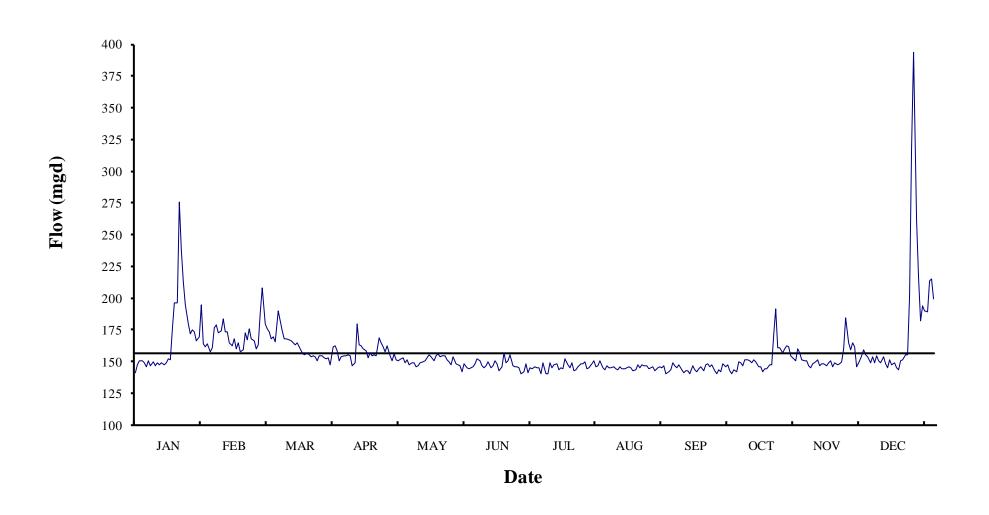

Chloride 2010 Monthly Averages


Fluoride 2010 Monthly Averages


Nitrate 2010 Monthly Averages

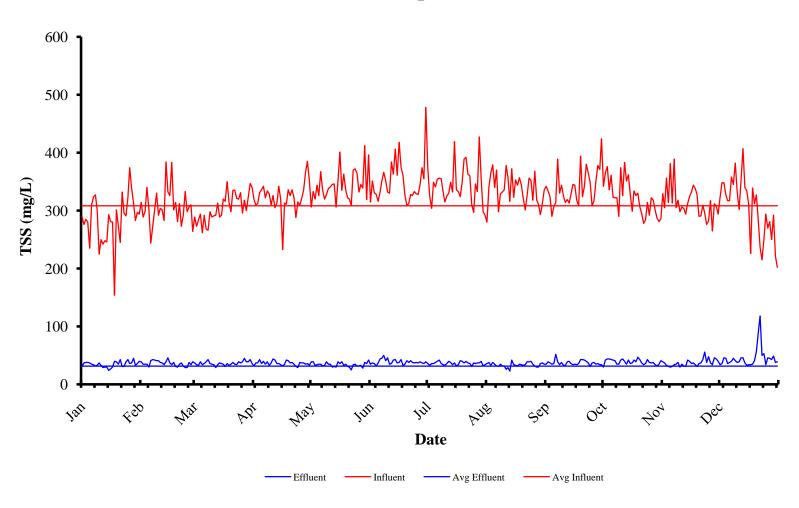
O-Phosphate 2010 Monthly Averages

Sulfate 2010 Monthly Averages



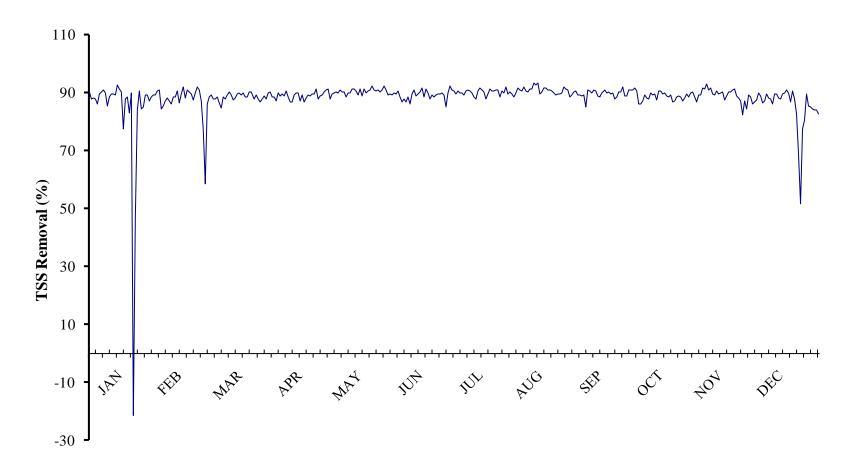
E. Daily Values of Selected Parameters

Daily values of selected parameters (e.g. TSS, Flow, TSS Removals, etc.) are tabulated and presented graphically; statistical summary information is provided. The straight horizontal lines on the graphs in this section represent annual means for the constituent.


Point Loma Wastewater Treatment Plant 2010 Daily Flows (mgd)

Point Loma Wastewater Treatment Plant 2010 Flows (mgd)

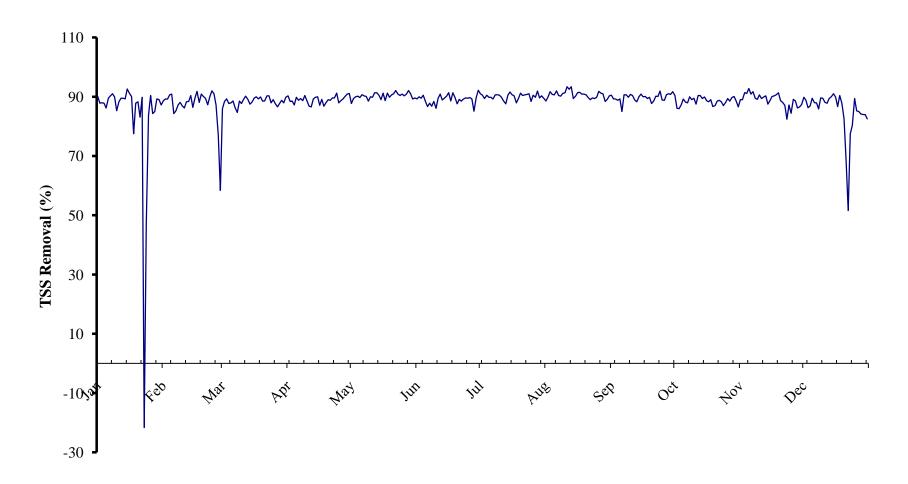
Day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
1	141.4	164.3	180.1	161.4	150.4	144.7	144.2	150.5	141.6	143.5	151.2	153.7	_
2	147.5	161.3	175.7	162.3	152.6	144.3	145.7	145.1	143.4	142.0	150.6	149.1	
3	151.0	163.8	173.3	158.3	153.0	145.3	144.8	143.4	148.9	149.6	150.7	154.1	
4	150.4	157.8	167.7	150.7	149.4	146.2	144.8	146.7	146.4	149.3	146.4	149.2	
5	149.0	161.1	169.1	154.1	151.3	148.1	140.1	145.2	144.9	146.6	144.9	154.6	
6	146.1	176.6	165.5	154.3	147.8	151.9	148.6	144.9	147.6	151.5	148.2	150.3	
7	150.2	179.0	189.6	154.6	149.3	151.0	140.7	146.0	143.7	151.4	149.5	148.9	
8	146.8	172.4	181.8	155.3	148.8	146.8	140.1	144.4	141.3	150.2	151.8	153.7	
9	149.6	174.5	174.2	154.2	145.9	144.8	148.8	143.3	143.0	148.8	146.6	148.6	
10	147.0	183.9	168.1	146.9	146.8	146.5	145.0	145.5	142.8	151.4	148.0	145.3	
11	148.8	173.5	168.1	148.8	149.0	149.4	147.3	144.2	140.3	149.8	147.9	151.1	
12	147.7	173.4	166.9	179.4	150.1	145.5	148.1	144.0	146.6	145.7	146.8	147.7	
13	149.0	164.4	166.1	163.1	150.3	146.9	143.6	145.1	143.8	145.7	149.0	148.9	
14	147.2	162.7	164.9	162.3	152.9	150.9	145.1	146.2	142.0	142.2	150.5	145.2	
15	149.1	167.7	163.5	159.9	155.0	148.2	144.5	144.7	143.9	144.4	146.3	143.6	
16	152.2	160.4	164.5	158.3	153.7	142.5	152.5	142.6	146.2	144.1	149.0	150.4	
17	151.6	164.8	159.8	153.0	150.7	145.8	147.8	143.8	142.6	147.2	147.6	151.3	
18	174.8	157.8	156.9	156.8	154.4	157.1	144.7	147.1	147.8	147.6	147.9	155.3	
19	196.5	159.3	155.7	154.2	156.1	149.3	149.1	145.0	148.3	171.1	149.9	155.4	
20	195.9	173.0	156.4	155.0	153.6	150.9	142.9	147.8	146.3	191.2	160.0	201.4	
21	275.4	167.0	156.5	154.6	154.4	155.0	143.7	146.7	147.3	160.6	184.2	318.3	
22	237.7	175.6	153.5	168.8	154.7	146.5	145.6	146.4	142.6	161.1	164.9	393.9	
23	213.1	167.9	154.6	164.5	151.1	146.1	148.1	144.0	140.4	156.7	159.3	261.2	
24	194.8	166.0	153.6	161.3	150.2	145.9	148.1	145.3	143.5	160.3	164.6	216.0	
25	179.5	160.1	150.9	157.4	147.8	145.3	149.9	146.1	142.0	162.1	161.4	182.0	
26	172.1	163.3	154.7	162.4	153.4	140.8	144.0	143.1	148.3	161.3	145.9	193.7	
27	174.9	188.6	154.8	154.5	148.5	142.2	145.3	145.3	146.3	154.3	150.7	190.3	
28	173.1	207.9	153.2	150.9	147.7	148.4	148.0	145.8	147.3	152.2	154.8	189.2	
29	166.4		152.2	156.3	146.6	141.1	150.5	145.2	142.6	150.8	159.6	213.7	
30	169.5		152.6	151.0	142.1	145.2	145.8	146.7	140.4	160.2	155.6	214.9	Annual
31	194.8		147.6		147.9		146.7	140.7		156.5		199.4	Summary
Average	169.1	169.6	163.0	157.5	150.5	147.1	145.9	145.2	144.4	153.2	152.8	181.6	156.7
Minimum	141.4	157.8	147.6	146.9	142.1	140.8	140.1	140.7	140.3	142.0	144.9	143.6	140
Maximum	275.4	207.9	189.6	179.4	156.1	157.1	152.5	150.5	148.9	191.2	184.2	393.9	394
Total	5243.0	4748.0	5051.8	4724.5	4665.3	4412.7	4523.9	4500.5	4332.1	4749.4	4583.5	5630.2	57165


Point Loma Wastewater Treatment Plant 2010 Total Suspended Solids

Point Loma Wastewater Treatment Plant **2010 Total Suspended Solids (mg/L)**

								20)1U 1	otai	Susp	enae	a Son	us (n	ug/L)	'										
	Jai	n	Fe	eb	M	lar	Aŗ	or	M	ay	Ju	ın	Jı	ıl	Αι	ug	Se	ep	О	ct	No	ov	D	ec		
Day	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff		
1	290	31	314	39	289	37	319	32	306	39	315	35	374	36	280	36	342	35	342	30	329	39	323	34		
2	276	37	289	35	273	34	310	37	333	39	351	37	325	33	340	38	334	39	365	42	305	37	348	36		
3	285	38	298	35	284	33	312	37	320	33	331	36	304	36	365	33	324	37	376	44	356	33	348	46		
4	280	38	340	35	294	39	331	43	344	34	328	32	349	36	379	38	290	35	336	44	314	31	327	45		
5	235	37	302	30	262	34	336	36	326	35	316	37	341	38	340	35	307	36	361	43	381	30	317	36		
6	310	35	244	41	292	36	342	40	367	35	332	44	354	40	370	32	314	52	323	42	313	31	317	38		
7	324	34	273	43	268	39	322	35	335	32	351	45	356	42	298	31	389	39	322	41	389	34	358	40		
8	327	32	301	42	266	43	334	39	320	33	366	50	355	36	329	35	330	34	322	35	305	35	345	45		
9	300	33	330	41	298	36	329	33	328	39	352	41	332	34	332	32	344	38	290	35	318	38	382	41		
10	225	37	292	41	289	35	310	37	338	35	332	46	315	33	336	32	325	33	374	42	298	30	332	38		
11	250	33	304	38	291	34	326	44	341	35	330	35	325	36	378	26	314	33	326	44	306	35	302	39		
12	242	29	301	37	292	29	305	42	345	30	384	36	330	40	358	29	319	39	383	40	304	32	352	46		
13	248	30	283	34	313	34	313	36	346	31	363	42	349	38	316	23	313	40	351	35	294	31	407	46		
14	246	30	384	39	289	37	342	36	306	30	406	43	332	34	372	42	328	36	362	42	312	42	340	37		
15	293	24	332	46	292	36	319	34	352	39	361	37	419	37	323	34	345	34	327	36	324	40	334	33		
16	281	27	326	37	320	35	233	32	401	36	418	38	336	32	353	33	344	35	299	37	332	36	310	34		
17	280	30	383	34	316	31	313	35	335	39	375	43	333	34	344	32	318	34	334	42	344	37	226	34		
18	154	40	301	38	350	36	311	42	363	33	361	33	324	41	357	35	308	36	326	39	338	34	339	35		
19	301	39	314	31	314	33	336	41	336	35	327	35	349	40	344	34	394	43	330	47	328	31	312	41		
20	274	35	281	30	298	35	326	37	322	31	309	41	389	37	321	33	324	43	307	43	290	36	327	57		
21	245	43	312	35	335	38	336	38	320	30	312	38	392	40	301	34	342	42	295	37	291	37	286	87		
22	332	31	273	37	335	35	322	35	309	25	328	41	363	37	326	39	380	40	278	34	309	43	237	118		
23	295	31	292	32	321	34	288	31	370	34	326	38	360	36	356	39	365	37	284	36	296	56	215	50		
24	291	39	333	29	320	39	315	29	372	35	333	37	310	31	352	40	349	31	314	43	276	38	250	53		
25	323	43	298	29	331	37	309	38	364	32	329	38	297	37	318	35	308	37	292	38	282	48	294	34		
26	374	36	306	38	296	39	321	37	332	32	328	37	346	36	368	32	317	38	322	37	317	37	270	46		
27	339	37	310	34	318	45	335	37	345	33	345	39	333	37	318	30	351	35	318	38	265	34	281	45		
28	313	45	264	39	300	39	366	35	339	28	374	37	427	37	311	30	378	36	301	34	312	46	250	43		
29	283	33			323	39	385	36	412	38	355	36	354	40	293	36	371	34	287	32	308	44	292	49		
	297				347	43	352	33	319	36	478	39	298	32	312	37	424	34	281	35	294	40	221	38	Sum	-
	294		20.6	26	340	36	222	27	396	42	251	20	292	34	336	35	246	27	286	41	21.6	27	202			Eff
_	284			36	305	36	323	37	343	34	351	39	344	36	336	34	340	37	323	39	314	37	305	45	298 154	34
Min May	154 374			29 46	262 350	29 45	233 385	29 44	306 412	25 42	309 478	32 50	292 427	31 42	280 379	23	290 424	31 52	278 383	30 47	265 389	30 56	202 407	33 118	154 478	23 118
wax	3/4	43	304	46	330	43	202	44	412	42	4/0	50	421	42	319	44	424	32	203	4/	309	50	407	110	4/0	110

Point Loma Wastewater Treatment Plant 2010 TSS Removal (%) Systemwide

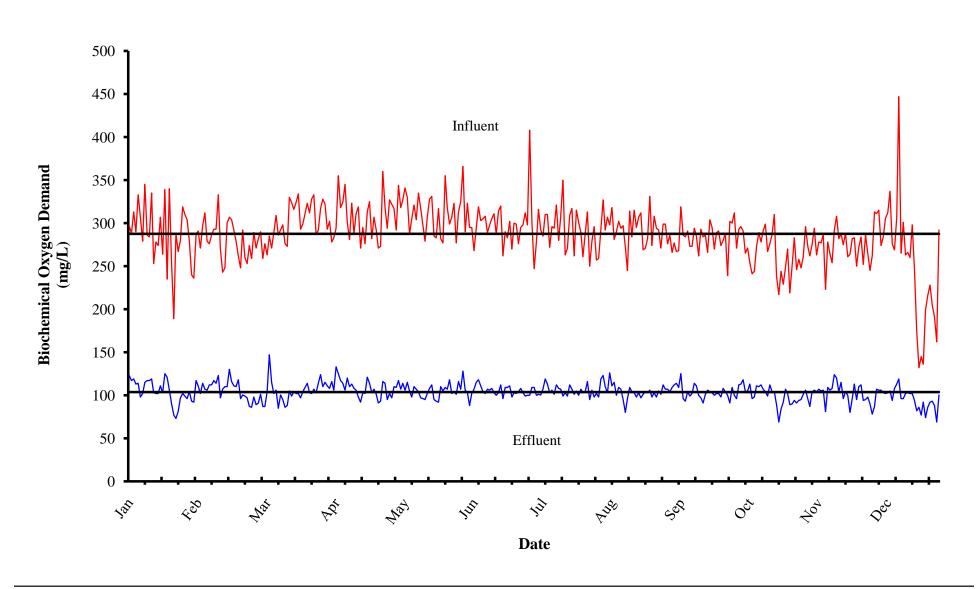

Date

Point Loma Wastewater Treatment Plant

2010 Total Suspended Solids Removals (%) at Point Loma

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Day	% Rem												
1	89	88	87	90	87	89	90	87	90	91	88	90	
2	87	88	88	88	88	90	90	89	88	89	88	90	
3	87	88	88	88	90	89	88	91	89	88	91	87	
4	86	90	87	87	90	90	90	90	88	87	90	86	
5	84	90	87	89	89	88	89	90	88	88	92	89	
6	89	83	88	88	91	87	89	91	83	87	90	88	
7	90	84	85	89	90	87	88	90	90	87	91	89	
8	90	86	84	88	90	86	90	89	90	89	89	87	
9	89	88	88	90	88	88	90	90	89	88	88	89	
10	84	86	88	88	90	86	90	91	90	89	90	89	
11	87	88	88	87	90	89	89	93	90	87	89	87	
12	88	88	90	86	91	91	88	92	88	90	90	87	
13	88	88	89	89	91	88	89	93	87	90	90	89	
14	88	90	87	90	90	89	90	89	89	88	87	89	
15	92	86	88	89	89	90	91	90	90	89	88	90	
16	90	89	89	86	91	91	91	91	90	88	89	89	
17	89	91	90	89	88	89	90	91	89	87	89	85	
18	74	87	90	87	91	91	87	90	88	88	90	90	
19	87	90	90	88	90	89	89	90	89	86	91	87	
20	87	89	88	89	90	87	91	90	87	86	88	83	
21	82	89	89	89	91	88	90	89	88	88	87	70	
22	91	86	90	89	92	88	90	88	90	88	86	50	
23	90	89	89	89	91	88	90	89	90	87	81	77	
24	87	91	88	91	91	89	90	89	91	86	86	79	
25	87	90	89	88	91	88	88	89	88	87	83	88	
26	90	88	87	89	90	89	90	91	88	89	88	83	
27	89	89	86	89	90	89	89	91	90	88	87	84	
28	86	85	87	90	92	90	91	90	91	89	85	83	
29	88		88	91	91	90	89	88	91	89	86	83	
30	88		88	91	89	92	89	88	92	88	86	83	Annu
31	86		89		89		88	90		86		81	Summ
Avg	87	88	88	89	90	89	89	90	89	88	88	84	88
Min	74	83	84	86	87	86	87	87	83	86	81	50	50
Max	92	91	90	91	92	92	91	93	92	91	92	90	93

Point Loma Wastewater Treatment Plant 2010 TSS Removal (%) Systemwide

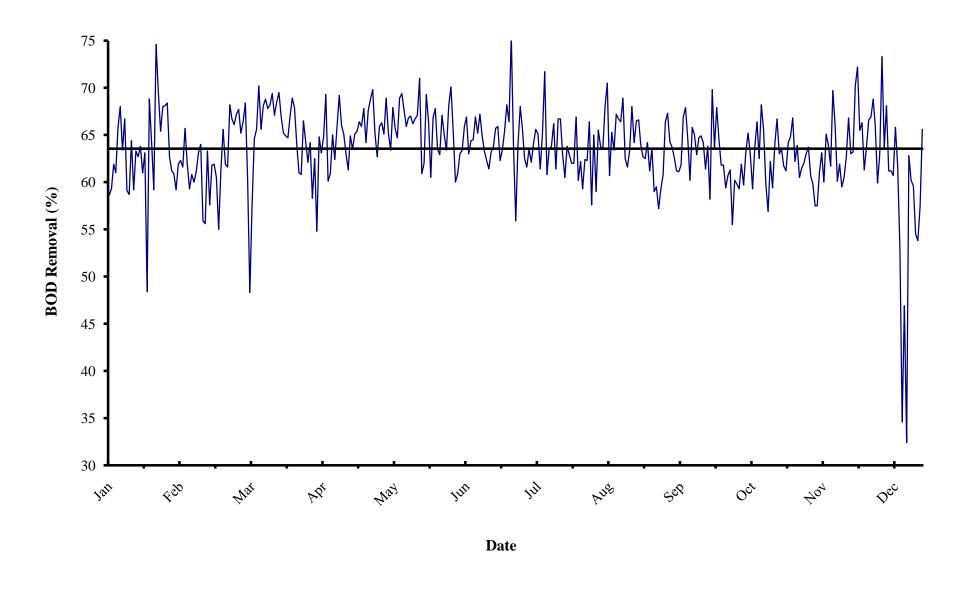

Date

Point Loma Wastewater Treatment Plant

2010Total Suspended Solids Removals (%) Systemwide

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Day	% Rem											
1	90	89	86	90	88	89	91	89	91	90.4	89	90
2	88	89	88	88	89	90	91	90	89	86	89	89
3	88	89	89	89	90	90	89	92	89	86	91	86
4	88	91	88	87	90	91	91	91	89	87	91	87
5	86	91	88	90	90	89	90	91	89	89	93	90
6	90	84	89	89	91	87	90	92	85	88	91	88
7	90	85	86	89	90	88	89	90	91	88	92	88
8	91	87	85	89	90	87	91	90	91	90	90	86
9	90	88	89	90	89	88	91	91	90	89	89	90
10	85	87	88	89	90	86	91	91	91	90	91	90
11	88	86	89	87	90	90	90	93	90	88	89	88
12	90	88	90	87	91	91	89	93	89	90	90	88
13	90	88	89	89	91	89	88	93	88	90	90	89
14	89	90	88	90	91	90	91	89	90	89	88	90
15	93	86	88	90	89	90	92	90	91	90	89	91
16	91	90	90	87	91	91	91	91	90	89	90	90
17	90	92	90	89	89	89	90	92	90	88	90	87
18	78	88	89	87	91	91	88	91	89	89	91	90
19	88	91	90	88	90	90	89	91	90	87	91	88
20	88	90	89	89	91	88	91	91	88	87	89	83
21	83	90	89	89	91	89	90	90	89	89	88	68
22	90	87	90	90	92	89	91	89	90	89	87	52
23	-22	90	90	90	91	89	91	90	90	88	82	78
24	47	92	88	91	90	90	91	89	92	87	87	80
25	84	91	89	88	91	90	88	90	89	88	84	89
26	90	87	88	89	90	90	91	92	89	89	89	85
27	84	77	87	89	91	89	90	91	91	89	89	85
28	85	58	88	90	92	85	92	91	91	90	86	84
29	89		89	91	91	90	90	88	91	90	87	84
30	89		88	91	89	92	90	89	92	89	87	84
31	87		90		90		90	90		87		83
Avg	83	87	88	89	90	89	90	91	90	89	89	85
Min	-22	58	85	87	88	85	88	88	85	86	82	52
Max	93	92	90	91	92	92	92	93	92	90	93	91

Point Loma Wastewater Treatment Plant 2010 Biochemical Oxygen Demand

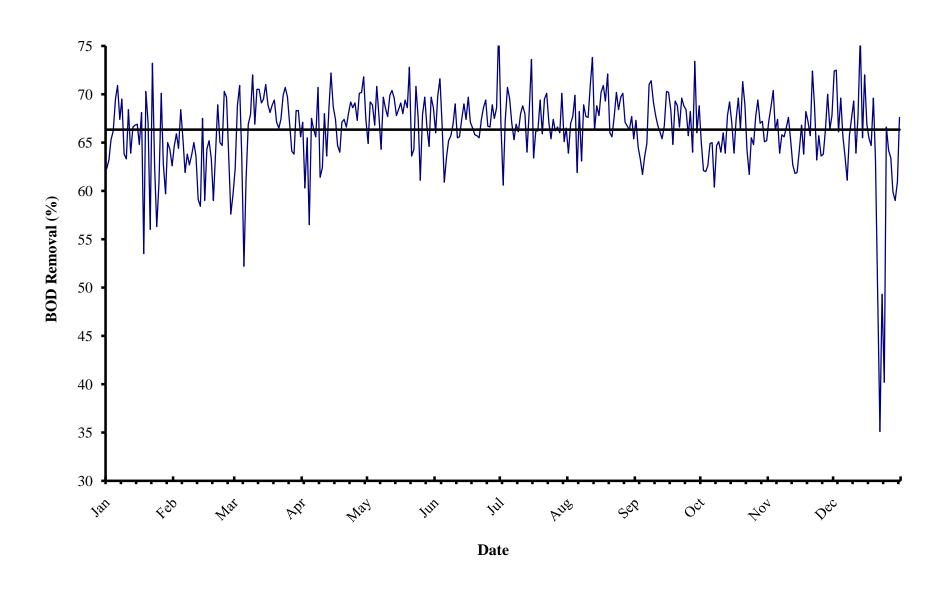


Point Loma Wastewater Treatment Plant

2010 Biochemical Oxygen Demand (mg/L)

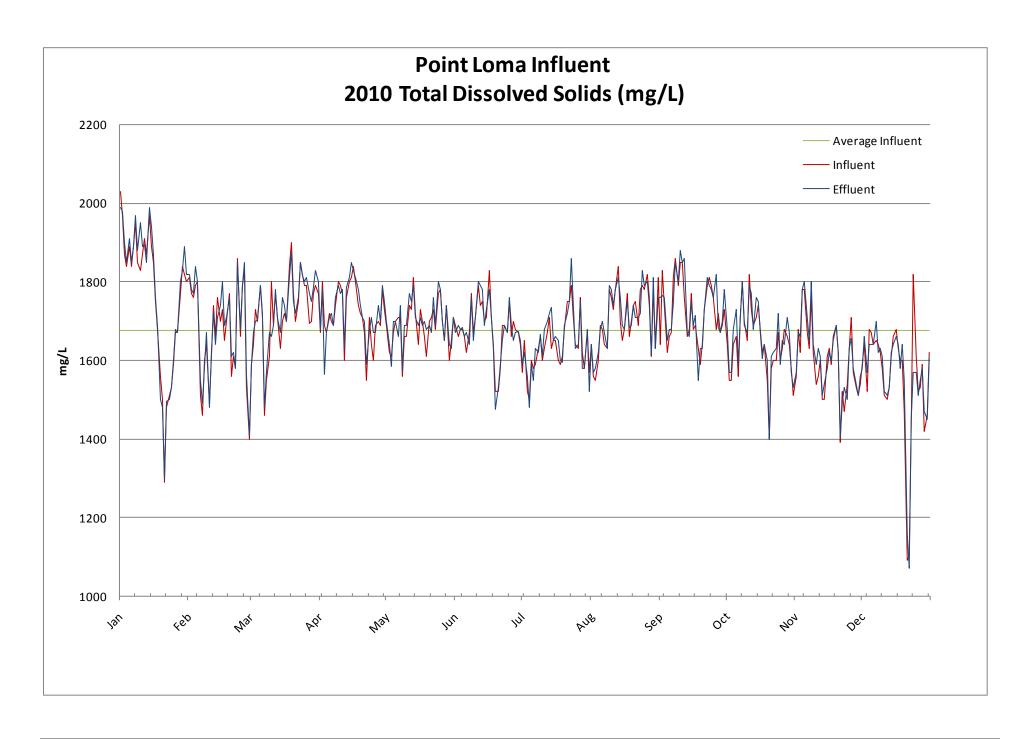
	Ja	n	Fe	b	M	ar	A	pr	M	ay	Ju	ın	Jı	ıl	A	ug	Se	ep	0	ct	N	ov	D	ec		
Day	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff		
1	297	123	291	111	290	101	302	108	292	109	290	106	301	109	293	119	286	104	271	96	296	106	262	78		
2	288	117	271	102	259	87	278	116	344	117	323	103	247	109	327	123	266	109	293	112	273	96	313	87		
3	313	119	297	114	276	87	283	106	318	107	295	88	278	100	292	110	277	112	296	113	262	87	311	107		
4	290	113	312	107	263	104	294	133	327	114	295	102	316	101	307	103	267	114	291	118	275	104	315	106		
5	333	114	279	106	285	147	355	125	341	106	268	107	292	100	298	126	268	109	265	104	294	106	274	106		
6	307	98	276	112	271	115	318	117	330	115	294	115	285	107	318	111	319	125	271	105	263	104	284	103		
7	279	102	286	112	289	102	324	114	287	105	319	118	310	119	281	115	286	96	254	113	278	107	306	102		
8	345	115	293	117	309	106	345	106	305	98	303	111	310	113	290	100	284	93	241	96	277	105	312	103		
9	286	117	293	114	286	85	301	120	321	110	305	104	272	103	302	109	291	104	244	98	287	106	337	105		
10	284	117	333	123	292	100	281	110	304	107	308	102	296	106	294	107	273	99	273	111	223	81	276	94		
11	335	119	270	97	298	95	323	113	335	104	289	107	294	101	297	95	273	102	289	110	278	109	269	108		
12	253	103	243	107	276	86	288	108	317	97	298	106	321	112	272	80	294	114	278	112	264	106	306	113		
13	278	102	248	110	273	88	311	106	297	96	305	108	280	108	245	96	285	111	291	107	254	108	447	119		
14	274	102	300	110	330	105	319	98	279	95	311	103	308	107	314	109	262	100	299	104	292	124	265	96		
15	307	111	307	130	324	99	271	92	307	102	287	100	350	99	284	104	293	97	267	99	308	120	301	96		
16	264	103	304	116	316	104	295	103	328	108	314	103	263	103	315	103	284	91	276	112	282	104	263	102		
17	339	125	292	111	324	102	276	102	331	112	320	112	271	99	295	98	286	101	287	104	288	115	266	103		
18	235	121	279	110	334	102	313	121	285	95	262	96	309	112	307	103	266	106	310	104	275	96	260	102		
19	340	106	262	118	293	97	325	114	283	93	290	109	317	107	312	97	304	104	238	89	288	104	298	102		
20	252	90	248	96	299	104	282	103	317	92	283	109	262	101	269	101	295	103	217	69	261	100	246	94		
21	189	77	292	100	311	109	307	107	282	110	302	111	315	105	271	104	270	100	244	84	264	80	174	82		
22	288	73	260	99	323	114	292	101	277	105	270	98	301	100	282	103	289	102	229	92	282	96	132	86		
23	267	81	253	97	312	103	271	91	355	109	300	103	289	107	331	106	291	102	249	107	283	113	145	77		
24	280	97	274	87	328	102	273	93	318	107	299	102	261	103	274	98	274	98	270	102	250	95	136	92		
25	319	102	259	86	333	107	360	116	299	118	276	104	288	104	308	103	280	108	219	89	272	110	199	74		
26	310	99	289	98	287	103	318	114	307	102	295	108	313	116	294	98	288	104	250	90	284	112	216	86		
27	304	96	271	89	292	114	294	95	323	104	298	103	250	95	292	105	239	100	283	94	252	94	228	92		
28	279	104	282	91	317	124	327	102	277	101	312	99	279	106	271	101	302	91	246	91	286	95	205	93		
29	240	93			328	110	322	97	313	116	298	100	296	98	299	112	300	109	258	94	265	98	191	88	_	
30	236	92			322	115	317	110	325	107	408	100	257	102	299	107	312	100	248	95	245	90	162	69		mary
31	287	117	201	106	293	111	20.6	100	366	128	201	105	259	98	276	107	202	104	261	101	252	102	292	100	Inf	Eff
Avg	287	104	281	106	301	104	306	108	311	105	301	105	291	105	294	105	283	104	265	100	273	102	257	96	288	103
Min	189	73	243	86	259	85	271	91	277	92	262	88	247	95	245	80	239	91	217	69	223	80	132	69	132	69
Max	345	125	333	130	334	147	360	133	366	128	408	118	350	119	331	126	319	125	310	118	308	124	447	119	447	147

Point Loma Wastwater Treatment 2010 BOD Removal (%) at Point Loma



Point Loma Wastewater Treatment Plant

2010 Biochemical Oxygen Demand Removals (%) at Point Loma


	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Day	% Rem	_											
1	58.6	62	65	64	63	63	64	59.3	64	65	64.2	70	
2	59	62	66	58	66	68	56	62	59	62	65	72	
3	62	62	68	63	66	70	64	62	60	62	67	66	
4	61	66	60	55	65	65	68	66	57	59	62	66	
5	66	62	48	65	69	60	66	58	59	61	64	61	
6	68	59	58	63	65	61	63	65	61	61	61	64	
7	63	61	65	65	63	63	62	59	66	56	62	67	
8	67	60	66	69	68	63	64	66	67	60	62	67	
9	59	61	70	60	66	66	62	64	64	60	63	69	
10	59	63	66	61	65	67	64	64	64	59	64	66	
11	64	64	68	65	69	63	66	68	63	62	61	60	
12	59	56	69	62	69	64	65	71	61	60	60	63	
13	63	56	68	66	68	65	61	61	61	63	58	73	
14	63	63	68	69	66	67	65	65	62	65	58	64	
15	64	58	69	66	67	65	72	63	67	63	61	68	
16	61	62	67	65	67	67	61	67	68	59	63	61	
17	63	62	69	63	66	65	64	67	65	64	60	61	
18	48	61	70	61	67	63	64	66	60	66	65	61	
19	69	55	67	65	67	62	66	69	66	63	64	66	
20	64	61	65	64	71	61	61	63	65	68	62	62	
21	59	66	65	65	61	63	67	62	63	66	70	53	
22	75	62	65	65	62	64	67	63	65	60	66	35	
23	70	62	67	66	69	66	63	68	65	57	60	47	
24	65	68	69	66	66	66	61	64	64	62	62	32	
25	68	67	68	68	61	62	64	67	61	59	60	63	
26	68	66	64	64	67	63	63	67	64	64	61	60	
27	68	67	61	68	68	65	62	64	58	67	63	60	
28	63	68	61	69	64	68	62	63	70	63	67	55	
29	61		67	70	63	66	67	63	64	64	63	54	
30	61		64	65	67	76	60	64	68	62	63	57	
31	59		62		65		62	61		61		66	Annual Summary
Avg	63.2	62.1	65.3	64.5	66.0	65.0	63.6	64.2	63.3	62.0	62.5	60.9	63.5
Min	48.4	55.0	48.3	54.8	60.5	60.0	55.9	57.6	57.2	55.5	57.5	32.4	32.4
Max	74.6	68.2	70.2	69.8	71.0	75.5	71.7	70.5	69.8	68.2	69.7	73.3	75.5

Point Loma Wastewater Treatment Plant 2010 BOD Removal (%) Systemwide

Point Loma Wastewater Treatment Plant 2010 Biochemical Oxygen Demand Removals (%) Systemwide

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Day	% Rem												
1	62	65	62	67	65	66	67	64	67	65	67	72	
2	63	66	69	60	69	70	61	67	65	62	69	73	
3	65	64	71	66	69	72	67	68	63	62	70	66	
4	66	68	64	57	67	67	71	70	62	63	66	70	
5	70	65	52	68	71	61	70	62	64	65	67	66	
6	71	62	61	66	68	64	67	68	65	65	64	64	
7	67	64	67	66	64	65	65	63	71	60	66	61	
8	70	63	68	71	70	66	67	69	71	65	66	66	
9	64	64	72	61	69	67	66	68	69	65	67	68	
10	63	65	67	62	68	69	68	68	68	64	68	69	
11	68	64	71	68	70	66	69	71	67	66	65	64	
12	64	59	71	64	70	66	68	74	66	64	63	68	
13	67	58	69	69	70	67	64	66	65	68	62	76	
14	67	68	70	72	68	69	68	69	67	69	62	66	
15	67	59	71	69	68	67	74	68	70	67	64	72	
16	65	64	69	67	69	70	63	70	70	64	67	67	
17	68	65	68	65	68	67	66	71	68	67	64	65	
18	54	63	69	64	69	67	66	69	65	70	68	65	
19	70	59	69	67	69	66	69	72	69	66	67	70	
20	67	64	67	67	73	66	66	66	69	71	66	63	
21	56	69	67	67	64	66	70	66	67	69	72	49	
22	73	65	67	68	64	67	70	68	70	64	69	35	
23	62	65	70	69	71	69	67	70	69	62	63	49	
24	56	70	71	69	68	69	65	68	68	66	66	40	
25	61	70	70	69	61	67	67	70	66	65	64	67	
26	70	64	67	67	68	67	66	70	68	68	64	64	
27	63	58	64	70	70	69	67	67	64	69	66	63	
28	60	60	64	70	67	68	66	67	73	67	70	60	
29	65		68	72	65	69	70	66	66	67	66	59	
30	64		68	67	70	77	65	68	69	65	68	61	Annual
31	63		66		69		67	65		65		68	Summary
Avg	65.0	63.9	67.3	66.6	68.0	67.0	67.2	68.1	67.4	65.6	66.1	63.4	66.3
Min	53.5	57.6	52.2	56.5	61.1	60.9	60.6	61.9	61.7	60.4	61.8	35.1	35.1
Max	73.2	70.3	72.0	72.2	72.8	77.0	73.6	73.8	73.4	71.3	72.4	76.0	77.0

Point Loma Wastewater Treatment Plant 2010 Total Dissolved Solids (mg/L)

	Jar	1	Fel	b	M	ar	Ap	r	May		Jun		Ju	l	Au	g	Sej)	Oc	t	No	V	De	2		
Day	Inf	Eff																								
1	2030	1990	1810	1820	1590	1590	1670	1680	1690	1700	1690	1670	1570	1590	1640	1640	1640	1760	1640	1680	1560	1570	1590	1580		
2	1970	1980	1770	1780	1640	1670	1800	1780	1620	1640	1660	1690	1650	1620	1560	1570	1830	1765	1550	1570	1680	1670	1640	1660		
3	1870	1900	1760	1770	1730	1700	1690	1565	1610	1585	1680	1680	1520	1560	1550	1580	1740	1760	1550	1570	1620	1660	1520	1570		
4	1840	1850	1790	1840	1700	1705	1670	1670	1670	1700	1680	1685	1500	1480	1600	1620	1620	1650	1640	1680	1780	1780	1680	1640		
5	1890	1910	1800	1800	1790	1790	1720	1710	1700	1700	1660	1660	1600	1590	1690	1680	1660	1680	1660	1730	1780	1800	1670	1640		
6	1840	1850	1510	1550	1710	1720	1700	1720	1710	1660	1620	1670	1580	1550	1680	1700	1670	1680	1560	1590	1670	1710	1640	1640		
7	1890	1890	1460	1490	1460	1480	1690	1690	1710	1740	1670	1640	1590	1630	1640	1670	1810	1745	1710	1710	1630	1650	1650	1700		
8	1950	1970	1600	1580	1550	1570	1740	1760	1560	1575	1770	1760	1630	1620	1630	1630	1860	1850	1800	1800	1760	1800	1640	1620		
9	1850	1880	1640	1670	1610	1670	1800	1790	1660	1690	1670	1650	1660	1665	1780	1790	1790	1800	1700	1690	1620	1640	1620	1630		
10	1830	1950	1490	1480	1800	1660	1790	1770	1660	1690	1710	1710	1600	1610	1760	1780	1850	1880	1650	1670	1540	1590	1580	1610		
11	1870	1890	1610	1620	1690	1690	1770	1780	1740	1770	1790	1800	1630	1680	1730	1740	1850	1850	1820	1790	1560	1630	1510	1520		
12	1910	1895	1740	1725	1770	1780	1600	1630	1730	1750	1740	1790	1670	1700	1780	1780	1760	1860	1730	1770	1600	1610	1500	1510		
13	1870	1850	1660	1640	1710	1710	1760	1785	1810	1790	1750	1780	1710	1720	1840	1810	1660	1670	1690	1680	1500	1510	1530	1530		
14	1970	1990	1760	1710	1630	1670	1800	1810	1720	1710	1700	1690	1630	1735	1700	1760	1680	1660	1710	1760	1500	1540	1610	1620		
15	1890	1940	1700	1740	1700	1760	1810	1850	1640	1690	1710	1730	1650	1650	1650	1690	1770	1750	1740	1750	1610	1580	1660	1640		
16	1850	1870	1730 1650	1800	1720 1700	1740	1840	1830	1730	1710 1690	1830	1780	1650	1660	1680	1680 1750	1680	1690	1680	1670	1630	1620	1680	1660		
17	1750 1680	1760 1690	1700	1690 1710	1840	1700 1810	1800 1740	1810 1780	1700 1660	1700	1710 1640	1710 1630	1600 1590	1650 1600	1770 1660	1685	1690 1630	1715 1550	1620 1640	1605 1640	1590 1660	1600 1650	1630 1600	1640 1580		
18 19	1560	1500	1770	1760	1900	1875	1720	1740	1610	1680	1520	1475	1610	1595	1700	1690	1590	1630	1550	1600	1690	1690	1600	1640		
20	1500	1480	1560	1610	1770	1750	1710	1710	1700	1690	1520	1530	1680	1690	1740	1740	1640	1630	1400	1400	1620	1620	1470	1550		
21	1290	1300	1610	1620	1700	1720	1670	1700	1710	1670	1580	1590	1750	1720	1750	1710	1730	1730	1580	1610	1390	1405	1090	1160		
22	1480	1495	1580	1580	1750	1760	1550	1590	1730	1760	1690	1650	1750	1750	1690	1710	1790	1810	1600	1620	1520	1490	1100	1070		
23	1510	1500	1860	1850	1850	1850	1710	1675	1680	1690	1690	1690	1790	1860	1780	1720	1810	1790	1600	1630	1470	1530	1440	1450		
24	1530	1530	1660	1680	1820	1815	1640	1710	1770	1800	1670	1670	1710	1740	1790	1830	1790	1780	1670	1720	1540	1500	1820	1570		
25	1590	1600	1790	1790	1790	1800	1600	1670	1780	1780	1750	1760	1640	1630	1780	1790	1760	1760	1600	1590	1630	1630	1610	1570		
26	1670	1680	1830	1850	1790	1810	1690	1670	1700	1700	1660	1690	1630	1640	1820	1800	1680	1820	1630	1650	1710	1655	1520	1510		
27	1670	1670	1530	1565	1695	1770	1700	1740	1650	1650	1700	1650	1760	1750	1760	1740	1720	1685	1680	1640	1570	1580	1530	1550		
28	1770	1800	1400	1410	1700	1750	1690	1700	1740	1740	1680	1670	1620	1580	1610	1615	1670	1670	1660	1710	1530	1540	1590	1580		
29	1840	1830			1770	1785	1780	1790	1600	1640	1670	1675	1580	1580	1780	1810	1690	1700	1640	1670	1510	1510	1420	1470		
30	1820	1890			1790	1830	1730	1750	1650	1630	1640	1650	1670	1680	1630	1630	1730	1780	1580	1570	1540	1560	1460	1450	Sumr	nary
31	1800	1820			1770	1800			1710	1710			1570	1520	1810	1760			1510	1530			1620	1605	Influent	Effluent
Avg	1767	1779	1670	1683	1724	1733	1719	1729	1689	1698	1682	1681	1638	1647	1709	1713	1726	1737	1638	1655	1600	1611	1555	1554	1677	1685
Min	1290	1300	1400	1410	1460	1480	1550	1565	1560	1575	1520	1475	1500	1480	1550	1570	1590	1550	1400	1400	1390	1405	1090	1070	1090	1070
Max	2030	1990	1860	1850	1900	1875	1840	1850	1810	1800	1830	1800	1790	1860	1840	1830	1860	1880	1820	1800	1780	1800	1820	1700	2030	1990
-																										

This page intentionally left blank.

F. Toxicity Bioassays

Toxicity Testing: Point Loma Wastewater Treatment Plant Effluent, 2010

INTRODUCTION

The City of San Diego's Toxicology Laboratory (CSDTL) conducted aquatic toxicity tests (bioassays) as required by its NPDES Permit No. CA0107409 (Order No. R9-2002-0025 from January 1 to July 31, 2010; Order No. R9-2009-0001 from August 1 to December 31, 2010) for the Point Loma Wastewater Treatment Plant (PLWTP). The testing requirements are designed to determine the acute and chronic toxicity of effluent samples collected from the PLWTP. This chapter presents summaries and discussion of the toxicity tests conducted in 2010.

Toxicity testing of wastewater effluent measures the bioavailability of toxicants in a complex mixture, accounts for interactions among potential toxicants, and integrates the effects of all constituents. Acute and chronic bioassays are characterized by the duration of exposure of test organisms to a toxicant as well as the adverse effect (measured response) produced as the result of exposure to a toxicant.

Acute toxicity testing consists of a short-term exposure period, usually 96 hours or less, and the acute effect refers to mortality of the test organism. The City of San Diego is required to conduct acute toxicity tests of PLWTP effluent on a semiannual schedule.

Chronic toxicity testing, in the classic sense, refers to long-term exposure of the test organism to a potential toxicant. This may involve exposing the test organism for its entire reproductive life cycle, which may exceed 12 months for organisms such as fish. In general, chronic tests are inherently more sensitive to toxicants than acute tests in that adverse effects are detected at lower toxicant concentrations. The City of San Diego is required to conduct monthly critical/early life stage chronic tests of PLWTP effluent that are intermediate between the acute and chronic toxicity testing protocols discussed above. These test results serve as short-term estimates of chronic toxicity.

MATERIALS & METHODS

Test Material

Twenty-four hour, flow-weighted, composite effluent samples were collected at the PLWTP and stored at 4 °C until test initiation. All tests were initiated within 36 hours of sample collection. The acute toxicity test concentrations were 3.87, 7.75, 15.5, 31.0, and 62% (nominal). Unimpacted receiving water was used as dilution water in accordance with permit requirements. Receiving water was collected at City of San Diego monitoring station B8 and used within 96 hours of collection. The receiving water samples were collected from a depth of 2m and stored at 4°C until test initiation. The station coordinates are as follows:

Collection Location	Latitude/Longitude	Depth (m)	
B-8	32° 45.50' N, 117° 20.77' W	88.4	

Chronic toxicity test concentrations consisted of 0.15, 0.27, 0.49, 0.88, and 1.56% effluent. Dilution water for the chronic effluent tests was collected in the same manner as in the acute toxicity tests.

Dilution water for the acute and chronic reference toxicant tests was obtained from the Scripps Institution of Oceanography (SIO), filtered, held at 4 °C, and used within 96 hours of collection. Detailed methodology for all toxicity testing is described in the City of San Diego Toxicology Laboratory Quality Assurance Manual (City of San Diego 2010).

Acute Bioassays

Topsmelt Survival Bioassay

Acute bioassays using the topsmelt *Atherinops affinis* were conducted as a part of the mandated multiple-species screening effort in November 2010 in accordance with USEPA protocol EPA/600/4-90/027F (USEPA 1993). Larval topsmelt (9-14 days old) were purchased from Aquatic Bio Systems (Fort Collins, CO), and acclimated to test temperature and salinity for at least 24 hours. Upon test initiation, the topsmelt (10 per replicate) were exposed for 96 hours in a static-renewal system to the effluent exposure series. Receiving water and brine controls were also tested. The test solutions were renewed at 48 hours and the organisms were fed once daily.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. Test concentrations consisted of 56, 100, 180, 320, and 560 μ g/L copper. Dilution water was obtained from SIO, filtered, held at 4 °C, and used within 96 hours of collection. Upon conclusion of the exposure period, percent survival was recorded. Tests were declared valid if control mortality did not exceed 10%. The data were analyzed using a multiple comparison procedure and point estimation method prescribed by USEPA (1993). ToxCalc (Tidepool Scientific Software 2002) and CETIS (Tidepool Scientific Software 2010) were used for all statistical analyses.

Mysid Survival Bioassay

Acute bioassays using the incumbent most-sensitive species, the mysid shrimp *Mysidopsis bahia*, were conducted in March 2010 in accordance with USEPA protocol EPA/600/4-90/027F (USEPA 1993). A second series of acute mysid bioassays were conducted in November 2010 as a part of the mandated multiple-species screening effort. Larval mysids (4-5 days old) were purchased from Aquatic Bio Systems (Fort Collins, CO), and acclimated to test temperature and salinity for at least 24 hours. Upon test initiation, the mysids (10 per replicate) were exposed for 96 hours in a static-renewal system to the effluent exposure series. Receiving water and brine controls were also tested. The test solutions were renewed at 48 hours and the organisms were fed once daily.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. Test concentrations consisted of 56, 100, 180, 320, and 560 µg/L copper. A SIO seawater control was

also tested. At the end of the exposure period, percent survival was recorded. Tests were declared valid if control mortality did not exceed 10%. The data were analyzed using a multiple comparison procedure and point estimation method prescribed by USEPA (1993). ToxCalc (Tidepool Scientific Software 2002) and CETIS (Tidepool Scientific Software 2010) were used for all statistical analyses.

Chronic Bioassays

Kelp Germination and Growth Test

Chronic bioassays using the giant kelp *Macrocystis pyrifera* were conducted each month during 2010 in accordance with USEPA protocol EPA/600/R-95/136 (USEPA 1995). Kelp zoospores were obtained from the reproductive blades (sporophylls) of adult *Macrocystis* plants at the kelp beds near La Jolla, California one day prior to test initiation. The zoospores were exposed in a static system for 48 hours to the effluent exposure series. A receiving water control was also tested.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. The concentrations of copper in the exposure series were 5.6, 10, 18, 32, 56, 100, and 180 μ g/L. A SIO seawater control was also tested. At the end of the exposure period, 100 zoospores from each replicate were examined and the percent germination was recorded. In addition, germ-tube length was measured and recorded for 10 of the germinated zoospores.

The data were analyzed in accordance with "Flowchart for statistical analysis of giant kelp, *Macrocystis pyrifera*, germination data" and "Flowchart for statistical analysis of giant kelp, *Macrocystis pyrifera*, growth data" (see USEPA 1995). ToxCalc (Tidepool Scientific Software 2002) and CETIS (Tidepool Scientific Software 2010) were used for all statistical analyses.

Red Abalone Development Bioassay

Chronic bioassays using the red abalone *Haliotis rufescens* were conducted each month during 2010 in accordance with USEPA protocol EPA/600/R-95/136 (USEPA 1995). Test organisms were purchased from Cultured Abalone (Goleta, California), and shipped via overnight delivery to the CSDTL. Mature male and female abalones were placed in gender-specific natural seawater tanks and held at 15 °C. For each test event, spawning was induced in 6-8 abalones in gender-specific vessels. Eggs and sperm were retained and examined under magnification to ensure good quality. Once deemed acceptable, the sperm stock was used to fertilize the eggs, and a specific quantity of fertilized embryos was added to each test replicate and exposed to the effluent series for 48 hours. A receiving water control was also tested. At the end of the test period, 100 embryos were examined and the number of normally and abnormally developed embryos was recorded.

Simultaneous reference toxicant testing was performed using reagent grade zinc sulfate. The concentrations of zinc in the exposure series were 10, 18, 32, 56, and 100 μ g/L. A SIO seawater control was also tested.

The percentage of normally developed embryos for each replicate was arcsine square root transformed. The data were analyzed in accordance with "Flowchart for statistical analysis of red abalone *Haliotis rufescens*, development data" (see USEPA 1995). ToxCalc (Tidepool Scientific

Software 2002) and CETIS (Tidepool Scientific Software 2010) were used for all statistical analyses.

During the first half of 2010, the red abalone bioassays exhibited a unusually high rate of failure, which was largely attributed to the high proportion of undivided (unicellular) embryos. Beginning in June 2010, the red abalone tests were scored both inclusive and exclusive of unicellular embryos, which can be indicative of poor animal quality. As shown in previous studies, the inclusive scoring method induced greater variability and reduced test sensitivity. Moreover, data from past and present studies showed no association between the distribution of unicellular embryos and exposure to the reference toxicant, which further support the use of the exclusive method in scoring the red abalone tests.

Topsmelt Survival and Growth Bioassays

Chronic bioassays using the topsmelt *Atherinops affinis* were conducted as a part of the mandated multiple-species screening effort from August to December 2010 in accordance with EPA/600/R-95/136 (USEPA 1995). Larval topsmelt (9-14 days old) were purchased from Aquatic Bio Systems (Fort Collins, CO) and exposed for seven days in a static-renewal system to the effluent. The test endpoints are survival and growth (dry biomass).

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. The concentrations of copper in the exposure series were 32, 56, 100, 180, and 320 $\mu g/L$. A SIO seawater control was also tested.

Upon conclusion of the exposure period, percent survival and dry biomass were recorded. ToxCalc (Tidepool Scientific Software 2002) and CETIS (Tidepool Scientific Software 2010) were used for all statistical analyses.

RESULTS & DISCUSSION

Acute Toxicity of PLWTP Effluent

In 2010, two semi-annual acute toxicity tests were conducted using mysids and one acute toxicity test was conducted using the topsmelt. The incumbent most-sensitive species, *Mysidopsis bahia*, was first tested in March 2010. Followingsubsequent implementation of Order No. R9-2009-0001 (effective August 1, 2010), a side-by-side screening of mysid versus topsmelt bioassays for sensitivity was conducted in November 2010. All tests met the acceptability criterion of >90% control survival and demonstrated compliance with permit standards (Table T.1). The City will conduct two additional acute screening events in order to select the most sensitivity species for routine acute toxicity monitoring.

Chronic Toxicity of PLWTP Effluent

In 2010, the City conducted monthly chronic toxicity tests using the giant kelp (*Macrocystis pyrifera*), which is the most sensitive species mandated by the compliance monitoring program. The results are summarized in Table T.2. All valid tests from 2010 were within compliance limits.

The City also conducted chronic bioassays using the red abalone (*Haliotis rufescens*) on a voluntary basis due to the ecological significance of the species. The previously described inclusive and exclusive scoring methods yielded identical findings (i.e. NOEC) in the effluent tests (Table T.2). All valid tests from 2010 were within compliance limits.

In accordance with renewal of NPDES Permit No. CA0107409) for the PLWTP (Order No. R9-2009-00010), which became effective August 1, 2010, the City conducted additional monthly chronic toxicity tests using the topsmelt in order to compare the sensitivity of giant kelp, red abalone, and topsmelt to the PLWTP effluent. These screening studies are scheduled for completion in 2011. All valid tests from 2010 were within compliance limits.

LITERATURE CITED

APHA. 2005. Standard Methods for the Examination of Water and Wastewater. 21th Edition. American Public Health Association. Washington, D.C.

City of San Diego. 2010. Quality Assurance Manual. City of San Diego Ocean Monitoring Program, Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, San Diego, CA

State Water Resources Control Board. 2005. California Ocean Plan (2005): Water Quality Control Plan, Ocean Waters of California. State Water Resources Control Board, Sacramento, CA.

Tidepool Scientific Software. 2002. ToxCalc Toxicity Information Management System Database Software.

Tidepool Scientific Software. 2010. Comprehensive Environmental Toxicity Information System Software.

USEPA. 1990. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA/600/4-90/027F.

USEPA. 1995. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. U.S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA/600/R-95/136.

USEPA. 2000. Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136). U.S. Environmental Protection Agency, Office of Water (4303), EPA 821-B-00-004.

Results and compliance summary of acute bioassays conducted using PLWTP effluent during 2010. Data are presented acute toxic units (TUa).

Sample Date	Topsmelt 96-Hour Bioassay	Mysid 96-Hour Bioassay
02/21/2010 1		2.50
03/21/2010 1	-	2.50
11/14/2010 ²	2.96	2.91
N	1	2
No. in compliance	1	2
Mean TUa	2.96	2.71

TABLE T.1

The 2001 California Ocean Plan compliance limit is 6.50 TUa.
 The 2005 California Ocean Plan compliance limit is 6.42 TUa.

TABLE T.2Results of chronic toxicity testing of PLWTP effluent from January through December 2010. Data are presented chronic toxic units (TUc).

	Giant l	Kelp	Red A	balone	Topsn	nelt
	Germination	Growth	Develo	opment	Survival	Growth
Sample Date			Exclusive	Inclusive		
01/04/2010	64	64	-	-	-	-
01/20/2010	-	-	-	64	-	-
02/08/2010	64	64	-	-	-	-
02/16/2010	-	-	-	Not valid	-	-
02/25/2010	-	-	-	Not valid	-	-
03/09/2010	-	-	-	Not valid	-	-
03/15/2010	64	64	-	64	-	-
04/05/2010	64	64	-	-	-	-
04/12/2010	-	-	-	64	-	-
05/03/2010	64	64	-	-	-	-
05/11/2010	-	-	-	Not valid	-	-
05/24/2010	-	-	-	Not valid	-	-
06/14/2010	64	64	-	-	-	-
06/22/2010	-	-	64	64	-	-
07/07/2010	Not valid	Not valid	-	-	-	-
07/13/2010	64	204	-	-	-	-
07/19/2010	-	-	64	64	-	-
08/09/2010	64	64	64	64	64	64
09/19/2010	64	64	64	64	64	64
10/09/2010	64	64	Not valid	Not valid	64	64
11/01/2010	64	64	Not valid	Not valid	64	64
12/13/2010	Not valid	Not valid	64	64	64	64
N	11	11	5	8	5	5
No. in compliance	11	11	5	8	5	5
Mean TUc	68	77	64	64	64	64

The NPDES permit limit is 205 TUc.

This page intentionally left blank.

G. 6-Year Tables

											ARSEN	IIC (ug/L)	2005											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week 1	Inf	Eff	Inf 1.35	2.31	Inf 3.93	1.38	Inf 2.13	Eff 1.49	Inf	Eff	Inf 1.94	Eff 1.14	Inf 1.28	Eff 0.71	Inf 2.13	Eff 1.6	<u>Inf</u> 1.1	Eff 0.51	Inf 1.68	0.53	Inf	Eff	Inf 1.71	Eff 1.13
2	3.22	1.88	1.53	0.67	1.78	1.26	2.13	1.49	2.79	1.79	1.04	0.68	1.29	0.71	1.03	0.64	1.66	1.33	1.09	0.5	3.41	1.83	1.07	0.47
3	1.58	0.89	1.88	0.94	1.32	0.87	2.12	0.99	1.06	0.49	1.63	1.36	1.75	1.61	1.06	0.53	1.82	1.25	1.87	1.26	2.56	2.07	0.87	ND
4	1.23	1.04	2.85	1.46	1.96	1.83	1.26	0.66	1.89	1.66	1.11	0.45	1.99	1.82	0.97	0.74	2.89	2.38	1.13	0.66	1.22	0.83	1	0.43
Avg	2.01	1.27	1.9	1.35	2.25	1.34	1.9	1.13	1.91	1.31	1.43	0.91	1.58	1.22	1.3	0.88	1.87	1.37	1.44	0.74	2.4	1.58	1.15	0.51
											ARSEN	IIC (ug/L)	2006											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1 2	1.61 1.13	0.70 0.63	1.08 1.00	0.66 0.65	1.22	0.45 0.4	0.95 1.67	0.46 0.61	1.24 0.82	ND 0.44	1.07 0.91	ND 0.46	0.73 1.23	0.67 0.59	1.17 0.84	0.76 0.56	1.04 1.10	0.56 0.51	1.08 1.07	0.49 0.50	1.44 1.23	0.77 0.65	0.85 0.87	<.40 ND
3	1.12	0.53	1.15	0.55	0.61	ND	1.17	0.6	0.83	0.5	0.91	0.57	0.99	0.65	0.95	0.77	1.00	0.51	1.34	<0.40	1.13	0.72	0.89	0.41
4	1.12	0.57	1.91	0.88			0.84	0.69	1.12	0.59	0.82	0.5	0.76	0.62	0.96	0.63			1.22	0.65	1.18	0.62	0.91	0.43
Avg	1.25	0.61	1.29	0.69	0.95	0.28	1.16	0.59	1.00	0.51	0.93	0.38	0.93	0.63	0.98	0.68	1.05	0.53	1.18	0.41	1.25	0.69	0.88	0.21
											ARSEN	IIC (ug/L)	2007											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	1.21	0.51	0.89	ND 0.40	1.32	0.70	1.18	0.73	0.92	0.55	1.39	0.95	1.09	0.69	1.00	ND	1.44	0.89	1.51	0.73	0.90	0.58	1 20	0.00
2 3	1.15 0.72	0.68 0.56	0.83 1.34	0.48 0.78	1.03 1.18	0.73 0.66	1.12 0.92	0.71 0.68	1.15 1.28	1.20 1.00	1.03 1.18	0.81 0.86	0.93 0.95	0.74 0.67	1.23 1.25	0.6 ND	1.00 1.05	0.57 0.53	1.16 1.10	0.67 0.79	0.96 0.81	0.55 0.56	1.29 1.00	0.86 0.73
4	1.58	0.52	1.54	0.70	1.25	0.7	1.08	0.71	1.35	0.96	1.10	0.00	1.14	0.67	1.30	ND	1.28	0.72	0.93	0.64	1.26	0.71	1.23	0.66
Avg	1.17	0.57	1.02	0.63	1.20	0.70	1.08	0.71	1.18	0.93	1.20	0.87	1.03	0.69	1.20	0.20	1.19	0.68	1.18	0.71	0.98	0.60	1.17	0.75
											ΔRSEN	IIC (ug/L)	2008											
		JAN		FEB		MAR		APR		MAY	7.1.32.1	JUN	2000	JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	0.97	0.71	1.13	0.50	1.28	0.48	0.93	0.58			1.36	0.90	0.90	0.72	1.06	0.75	1.29	0.86	1.19	0.87			1.22	0.81
2	1.63	0.64	1.89	0.58	1.01	0.45	1.14	0.88	1.28	0.98	1.13	0.71	1.23	0.71	1.27	0.82	0.97	0.71	1.30	0.66	0.87	0.79	1.10	0.72
3 4	0.91 1.21	0.50 0.55	1.23 1.38	0.58 0.79	1.07 0.82	0.43 0.69	1.27 1.30	0.69 0.86	1.39 1.34	0.95 0.95	1.06 1.03	0.91 0.54	1.19 1.19	0.73 0.77	1.16 1.34	0.96 0.91	1.03 1.15	0.84 0.84	1.24 1.20	0.73 0.83	1.01 1.05	0.72 0.68	2.85 1.48	1.55 1.07
Avg	1.18	0.60	1.41	0.61	1.05	0.51	1.16	0.75	1.34	0.96	1.15	0.77	1.13	0.73	1.21	0.86	1.11	0.81	1.23	0.77	0.98	0.73	1.66	1.04
											ADCEN	IIC (ug/L)	2000											
		JAN		FEB		MAR		APR		MAY	ANSEN	JUN	2009	JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	1.16	0.86	1.04	0.58			1.18	0.66	1.02	0.66	0.54	0.76	1.08	0.59	1.78	1.22			1.58	0.78	0.97	0.68	1.15	0.81
2	0.75	0.65	1.35	0.89	0.97	0.42	1.34	0.56	1.02	1.02	1.21	0.78	1.13	0.68	1.70	1.07	1.52	1.09	0.91	0.75	0.83	0.70	1.28	0.83
3 4	1.08 1	0.65	1.24 1.14	0.88 0.88	1.02 1.09	<0.40	1.22 1.00	0.89	1.40 1.42	0.88 0.79	1.23 0.84	0.88 0.59	1.15 1.01	0.78 0.79	1.32 1.47	1.12 1.09	1.56 1.45	1.12 1.08	1.15	0.81 0.87	1.10	0.84 0.89	1.04 1.04	0.59 0.61
Avg	0.9975	0.66 0.71	1.14	0.81	1.03	0.70 0.37	1.19	0.66	1.22	0.79	0.96	0.75	1.09	0.79	1.57	1.13	1.51	1.10	1.11	0.80	1.10	0.78	1.13	0.71
		741		FFD		MAD		400		MAN	ARSEN	IIC (ug/L)	2010	7111		ALIC		CED		OCT		NOV		DEC
Week	Inf	JAN Eff	Inf	FEB Eff	Inf	MAR Eff	Inf	APR Eff	Inf	MAY Eff	Inf	JUN Eff	Inf	JUL Eff	Inf	AUG Eff	Inf	SEP Eff	Inf	OCT Eff	Inf	NOV Eff	Inf	DEC Eff
1	1.16	0.82	1.58	0.82	1.39	0.82	1.13	0.95	1.52	0.91	1.38	0.79	1.01	0.70	1.32	1.06	1.29	1.15	1.23	0.84	0.87	0.95		
2	1.07	0.53	1.28	0.90	1.87	0.96	1.93	0.95	1.14	0.61	1.20	0.83	0.85	0.62	1.37	1.07	1.10	0.84	1.30	0.83	1.05	0.64	1.37	0.85
3	3.08	1.54	1.44	0.78	1.41	0.89	1.31	0.76	0.97	0.65	1.13	0.82	0.73	0.64	1.45	1.02	0.90	0.74	1.25	0.98	1.45	1.02	1.47	0.86
4	_																							
Avg	1.56 1.7175	0.82	1.43	0.83	1.37	0.93	1.15	0.84	1.01	0.68 0.71	1.24	0.81	0.84	0.57 0.63	1.35	1.07	1.10	0.79 0.88	0.83	0.92	1.00	0.56 0.79	3.34 2.06	1.62

											CADMI	UM (ug/L)	2005											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1			0.3	ND	0.2	0.5	ND	ND			1	0.6	0.3	ND	0.7	0.4	ND	ND	0.6	ND			ND	ND
2	0.3	0.2	ND	0.5	0.3	ND	ND	ND	0.4	ND	0.6	0.8	0.4	ND	0.4	<0.2	0.6	ND	0.3	ND	ND	ND	ND	ND
3	ND	0.4	1.3	ND	0.5	0.2	ND	ND	0.3	ND	1.1	0.6	0.3	ND	0.4	ND	0.4	ND	0.3	ND	0.6	ND	ND	ND
4	ND	ND	0.9	0.69	0.5	0.4	ND	ND	0.5	0.2	0.7	0.5	0.3	ND	0.3	ND	0.5	ND	ND	ND	0.7	0.6	ND	ND
Average	0.1	0.2	0.6	0.4	0.4	0.3	ND	ND	0.4	0.1	0.9	0.6	0.3	ND	0.5	0.1	0.4	ND	0.3	ND	0.4	0.2	ND	ND
											CADMI	UM (ug/L)	2006											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	ND	ND	0.2	ND	0.6	0.4	ND	ND	0.2	ND	0.5	ND	0.3	ND	0.3	0.3	0.7	ND	ND	ND	ND	ND
2	ND	ND	ND	ND	0.2	<0.2	ND	ND	ND	ND	ND	ND	0.7	ND	ND	ND	0.4	0.2	ND	ND	0.2	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.3	ND	0.5	0.3	0.3	ND	0.4	ND						
4	0.5	ND	ND	ND			0.2	ND	0.45	ND	0.3	ND	ND	0.2	0.2	ND			0.9	0.3	ND	ND	ND	ND
Average	0.1	ND	ND	ND	0.1	0	0.2	0.1	0.11	ND	ND	ND	0.4	0.1	0.2	ND	0.4	0.2	0.4	0.1	0.1	ND	ND	ND
											CADMI	UM (ug/L)	2007											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	1.4	1.3	0.6	ND	ND	<0.5	ND	ND	ND	ND	ND		Į.
2	ND	ND	ND	ND	38.3	ND	ND	ND	ND	ND	2.6	1.7	ND	ND	0.6	ND								
3	0.6	ND	0.7	<0.5	ND	ND	0.7	ND	ND	ND	0.7	ND	ND	ND	ND	ND	0.6	0.6	ND	ND	ND	ND	ND	ND
4	0.7	ND			ND	ND	ND	ND	ND	ND			ND											
Average	0.3	ND	0.2	<0.0	9.6	ND	0.2	ND	ND	ND	1.8	1.0	0.3	0.2	0.2	ND	<0.2	0.2	ND	ND	ND	ND	ND	ND
											CADMI	UM (ug/L)	2008											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
											CADMI	UM (ug/L)	2009											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			0.6	ND	ND	<0.5	ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0	ND						
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6	ND						
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2	ND	0.2	ND	ND	0.0	ND	ND
											CADMI	UM (ug/L)	2010											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		Į.
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND																				
4 Average	ND ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND											

											CHROM:	IUM (ug/L) 2005											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	4.7	1.0	5.1	2.3	3.5	2.2	5.2	23.4	- 0	2.2	5.2	4	4.7	0.9	4.5	2.1	5.2	23	4.1	ND	11.6	1.0	3.5	1.2
2	4.7 3.2	1.8 0.2	7.6 6.5	2.1 1.2	3.6	2.6 1	7 5.1	1.3 2.9	5.8 3.7	2.2 1.7	5.4 5.6	5.6 5.6	3.9 2.6	1.2 1.9	4.5 5.4	1.2 1.1	8.6	1.6 1.3	4.8	0.2 ND	11.6 4.8	1.9 5.6	3.9 2.9	ND 0.3
4	4.5	1.3	3.6	2.9	4.4 4.7	1.9	5.1	2.1	7.2	6.8	6.6	3.9	5.3	2.1	3.4	0.4	3.4 4.2	1.1	4.5 4	ND	3.4	1.3	5.1	0.6
Average	4.1	1.1	5.7	2.1	4.1	1.9	5.6	7.4	5.6	3.6	5.7	4.8	4.1	1.5	4.5	1.2	5.4	1.6	4.4	0.1	6.6	2.9	3.9	0.5
/ive. age			3.,			2.,	3.0		3.0	3.0	3.,			2.5			J	2.0		0.1	0.0	2.,,	3.5	0.5
											CHROM	IUM (ug/L) 2006											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	27.3	3.8	4.4	1.1	4.5	1.2	3.9	0.6	7.3	0.2	4.7	1.6	4.2	1.2	5.5	1.9	9.7	6.2	9.6	0.4	10.3	1.2	7.3	ND
2	4.6 8.7	1.3 1.2	4.2 4.5	1.4 3.4	4 2.2	0.4 0.6	181.0 4.2	0.7 1.1	6.3 4.7	0.7 1.6	10.6 6.2	1.6 0.8	13.1 5.3	1.1 2.1	5.9 14.7	2.0 3.6	11.5 9	3.1 3.4	8.6 6.8	7.6 1.1	13.1 5.4	2.1 1.8	4 6.2	ND ND
4	5.7	2.6	4.3	2.0	2.2	0.0	6.1	2.2	10.8	1.5	10.9	4	7.9	0.9	7.3	1.5	,	3.4	16	2.3	6.6	2.9	5.4	ND
Average	11.6	2.2	4.4	2.0	3.6	0.7	48.8	1.2	7.3	1.0	8.1	2.0	7.6	1.3	8.4	2.3	10.1	4.2	10.3	2.9	8.9	2.0	5.7	ND
0-																								
											CHROM	IUM (ug/L) 2007							0.57				250
Week	Inf	JAN Eff	Inf	FEB Eff	Inf	MAR Eff	Inf	APR Eff	Inf	MAY Eff	Inf	JUN Eff	Inf	JUL Eff	Inf	AUG Eff	Inf	SEP Eff	Inf	OCT Eff	Inf	NOV Eff	Inf	DEC Eff
1	8	ND	6.0	3.0	6.6	ND ND	12.5	2.1	6.6	ND	10.9	ND	6.6	ND	5.0	1.4	7.2	16.5	6.6	ND	7.3	1.4	THT	ETT
2	7.4	ND	4.2	1.8	5.8	1.8	7.7	<1.2	5.1	ND	7.3	ND	11.2	ND	5.7	ND	7.2	ND	10.6	2.2	11.6	1.5	12.6	1.9
3	7.7	ND	7.1	2.1	10.3	2.1	9.0	1.2	6.8	2.0	5.8	ND	9.4	ND	13.5	1.5	7.6	ND	5.2	1.3	4.7	ND	8.1	2.4
4	10.9	ND			9.6	1.9	7.9	1.5	7.5	ND			7.5	ND	8.1	2.7	9.1	ND	5.7	ND	8.6	1.7	7.2	3.0
Average	8.5	ND	5.8	2.3	8.1	1.5	9.3	1.6	6.5	0.5	8.0	ND	8.7	ND	8.1	1.4	7.8	4.1	7.0	0.9	8.1	1.2	9.3	2.4
		JAN		EED		MAD		ADD		MAV	CHROM:	IUM (ug/L) 2008	7111		AUG		CED		OCT		NOV		DEC
Week	Inf	JAN Eff	Inf	FEB Eff	Inf	MAR Eff	Inf	APR Eff	Inf	MAY Eff		JUN		JUL Eff	Inf	AUG Eff	Inf	SEP Eff	Inf	OCT Eff	Inf	NOV Eff	Inf	DEC Eff
Week 1	Inf 5.6	JAN Eff ND	Inf 16.7	FEB Eff 3.2	<u>Inf</u> 11.7	MAR Eff 3.5	<u>Inf</u> 3.9	APR Eff ND	Inf	MAY Eff	CHROMI Inf 2.9) 2008 Inf 10.0	JUL Eff 1.3	<u>Inf</u> 6.8	AUG Eff 2.4	<u>Inf</u> 8.1	SEP Eff 1.7	Inf 8.0	OCT Eff ND	Inf	NOV Eff	<u>Inf</u> 4.9	DEC Eff ND
		Eff		Eff		Eff		Eff	Inf 10.3		Inf	JUN Eff	Inf	Eff		Eff		Eff		Eff	Inf 8.5			Eff
1	5.6	Eff ND	16.7	Eff 3.2	11.7	Eff 3.5	3.9	Eff ND		Eff	Inf 2.9	JUN Eff ND	Inf 10.0	Eff 1.3	6.8	Eff 2.4	8.1	Eff 1.7	8.0	Eff ND		Eff	4.9	Eff ND ND 1.2
1 2 3 4	5.6 6 5.9 14.8	Eff ND ND ND ND	16.7 18.8 4.7 4.4	3.2 1.8 1.7 1.6	11.7 7.7 6.3 7.6	3.5 1.8 2.0 ND	3.9 7.1 9.3 3.2	Eff ND ND ND ND	10.3 12.1 3.9	ND 2.4 ND	Inf 2.9 4.3 4.9 13.7	JUN Eff ND ND 2.4 3.2	Inf 10.0 6.1 6.4 4.7	Eff 1.3 ND ND ND	6.8 5.2 8.8 6.9	2.4 <1.2 2.1 1.3	8.1 5.5 4.2 8.9	1.7 1.5 1.4 2.0	8.0 5.5 3.2 44.4	Eff ND <1.2 1.4 6.5	8.5 5.0 7.6	2.3 1.5 3.0	4.9 6.3 4.5 3.4	Eff ND ND 1.2 1.3
1 2 3	5.6 6 5.9	Eff ND ND ND	16.7 18.8 4.7	3.2 1.8 1.7	11.7 7.7 6.3	3.5 1.8 2.0	3.9 7.1 9.3	Eff ND ND ND	10.3 12.1	ND 2.4	Inf 2.9 4.3 4.9	JUN Eff ND ND 2.4	Inf 10.0 6.1 6.4	1.3 ND ND	6.8 5.2 8.8	2.4 <1.2 2.1	8.1 5.5 4.2	1.7 1.5 1.4	8.0 5.5 3.2	ND <1.2 1.4	8.5 5.0	2.3 1.5	4.9 6.3 4.5	Eff ND ND 1.2
1 2 3 4	5.6 6 5.9 14.8	Eff ND ND ND ND	16.7 18.8 4.7 4.4	3.2 1.8 1.7 1.6	11.7 7.7 6.3 7.6	3.5 1.8 2.0 ND	3.9 7.1 9.3 3.2	Eff ND ND ND ND	10.3 12.1 3.9	ND 2.4 ND	Inf 2.9 4.3 4.9 13.7 6.5	JUN Eff ND ND 2.4 3.2	Inf 10.0 6.1 6.4 4.7 6.8	Eff 1.3 ND ND ND	6.8 5.2 8.8 6.9	2.4 <1.2 2.1 1.3	8.1 5.5 4.2 8.9	1.7 1.5 1.4 2.0	8.0 5.5 3.2 44.4	Eff ND <1.2 1.4 6.5	8.5 5.0 7.6	2.3 1.5 3.0	4.9 6.3 4.5 3.4	Eff ND ND 1.2 1.3
1 2 3 4	5.6 6 5.9 14.8	Eff ND ND ND ND	16.7 18.8 4.7 4.4	3.2 1.8 1.7 1.6	11.7 7.7 6.3 7.6	3.5 1.8 2.0 ND	3.9 7.1 9.3 3.2	Eff ND ND ND ND	10.3 12.1 3.9	ND 2.4 ND	Inf 2.9 4.3 4.9 13.7 6.5	JUN Eff ND ND 2.4 3.2	Inf 10.0 6.1 6.4 4.7 6.8	Eff 1.3 ND ND ND	6.8 5.2 8.8 6.9	2.4 <1.2 2.1 1.3	8.1 5.5 4.2 8.9	1.7 1.5 1.4 2.0	8.0 5.5 3.2 44.4	Eff ND <1.2 1.4 6.5	8.5 5.0 7.6	2.3 1.5 3.0	4.9 6.3 4.5 3.4	Eff ND ND 1.2 1.3
1 2 3 4	5.6 6 5.9 14.8	Eff ND ND ND ND	16.7 18.8 4.7 4.4	Eff 3.2 1.8 1.7 1.6 2.1	11.7 7.7 6.3 7.6	Eff 3.5 1.8 2.0 ND 1.8	3.9 7.1 9.3 3.2	Eff ND ND ND ND	10.3 12.1 3.9	ND 2.4 ND 0.8	Inf 2.9 4.3 4.9 13.7 6.5	JUN Eff ND ND 2.4 3.2 1.4	Inf 10.0 6.1 6.4 4.7 6.8	Eff 1.3 ND ND ND ND	6.8 5.2 8.8 6.9	Eff 2.4 <1.2 2.1 1.3	8.1 5.5 4.2 8.9	Eff 1.7 1.5 1.4 2.0 1.7	8.0 5.5 3.2 44.4	Eff ND <1.2 1.4 6.5	8.5 5.0 7.6	2.3 1.5 3.0 2.3	4.9 6.3 4.5 3.4	Eff ND ND 1.2 1.3
1 2 3 4 Average	5.6 6 5.9 14.8 8.1	EFF ND ND ND ND ND	16.7 18.8 4.7 4.4 11.2	3.2 1.8 1.7 1.6 2.1	11.7 7.7 6.3 7.6 8.3	Eff 3.5 1.8 2.0 ND 1.8	3.9 7.1 9.3 3.2 5.9	EFF ND ND ND ND ND	10.3 12.1 3.9 8.8	ND 2.4 ND 0.8	Inf 2.9 4.3 4.9 13.7 6.5	JUN Eff ND ND 2.4 3.2 1.4 IUM (ug/L JUN	Inf 10.0 6.1 6.4 4.7 6.8	Eff 1.3 ND ND ND 0.3	6.8 5.2 8.8 6.9 6.9	2.4 <1.2 2.1 1.3 1.5	8.1 5.5 4.2 8.9 6.7	Eff 1.7 1.5 1.4 2.0 1.7	8.0 5.5 3.2 44.4 15.3	Eff ND <1.2 1.4 6.5 2.0	8.5 5.0 7.6 7.0	2.3 1.5 3.0 2.3	4.9 6.3 4.5 3.4 4.8	Eff ND ND 1.2 1.3 0.6
1 2 3 4 Average	5.6 6 5.9 14.8 8.1 Inf 2.8 3.7	Eff ND ND ND ND ND ND ND 1AN Eff 1.4 ND	16.7 18.8 4.7 4.4 11.2 Inf 14.3 6.6	Eff 3.2 1.8 1.7 1.6 2.1 FEB Eff 2.7 1.8	11.7 7.7 6.3 7.6 8.3 Inf	Eff 3.5 1.8 2.0 ND 1.8 MAR Eff	3.9 7.1 9.3 3.2 5.9 Inf 6.4 10.5	Eff ND ND ND ND ND APR Eff 2.0 2.2	10.3 12.1 3.9 8.8 Inf 4.3 7.4	ND 2.4 ND 0.8 MAY Eff 2.7 6.8	Inf 2.9 4.3 4.9 13.7 6.5 CHROM: Inf 9.3 5.8	JUN Eff ND ND 2.4 3.2 1.4 IUM (ug/L JUN Eff 2.0 1.5	Inf 10.0 6.1 6.4 4.7 6.8) 2009 Inf 5.0 7.1	Eff 1.3 ND ND ND O.3 JUL Eff 1.3 1.4	6.8 5.2 8.8 6.9 6.9	Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <1.2 2.3	8.1 5.5 4.2 8.9 6.7 Inf	Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff	8.0 5.5 3.2 44.4 15.3 Inf 13.1 5.2	Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6	8.5 5.0 7.6 7.0 Inf 7.5 3.0	2.3 1.5 3.0 2.3 NOV Eff 1.9 2.8	4.9 6.3 4.5 3.4 4.8 Inf 8.8 2.7	Eff ND ND 1.2 1.3 0.6 DEC Eff 2.0 1.8
1 2 3 4 Average	5.6 6 5.9 14.8 8.1 Inf 2.8 3.7 3.5	Eff ND	16.7 18.8 4.7 4.4 11.2 Inf 14.3 6.6 6.7	Efff 3.2 1.8 1.7 1.6 2.1 FEB Efff 2.7 1.8 3.4	11.7 7.7 6.3 7.6 8.3 Inf 4.3 5.6	Eff 3.5 1.8 2.0 ND 1.8 MAR Eff	3.9 7.1 9.3 3.2 5.9 Inf 6.4 10.5 9.5	Eff ND ND ND ND ND APR Eff 2.0 2.2 1.9	10.3 12.1 3.9 8.8 Inf 4.3 7.4 12.2	MAY Eff 2.7 6.8 4.0	Inf 2.9 4.3 4.9 13.7 6.5 CHROM: Inf 9.3 5.8 5.1	JUN Eff ND ND 2.4 3.2 1.4 IUM (ug/L JUN Eff 2.0 1.5 2.9	Inf 10.0 6.1 6.4 4.7 6.8) 2009 Inf 5.0 7.1 8.1	Eff 1.3 ND ND ND 0.3 JUL Eff 1.3 1.4	6.8 5.2 8.8 6.9 6.9 Inf 5.3 5.8 5.1	Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <1.2 2.3 1.5	8.1 5.5 4.2 8.9 6.7 Inf	Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff	8.0 5.5 3.2 44.4 15.3 Inf 13.1 5.2 4.8	Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6 1.3	8.5 5.0 7.6 7.0 Inf 7.5 3.0 4.3	2.3 1.5 3.0 2.3 NOV Eff 1.9 2.8 1.4	4.9 6.3 4.5 3.4 4.8 Inf 8.8 2.7 5.5	Eff ND ND 1.2 1.3 0.6 DEC Eff 2.0 1.8 1.4
1 2 3 4 Average	5.6 6 5.9 14.8 8.1 Inf 2.8 3.7 3.5 19.5	Eff ND LFff 1.4 ND ND ND ND ND ND LFff 1.42 ND	16.7 18.8 4.7 4.4 11.2 Inf 14.3 6.6 6.7 5.4	Efff 3.2 1.8 1.7 1.6 2.1 FEB Eff 2.7 1.8 3.4 2.7	11.7 7.7 6.3 7.6 8.3 Inf 4.3 5.6 6.1	Eff 3.5 1.8 2.0 ND 1.8 MAR Eff 2.2 2.0 1.7	3.9 7.1 9.3 3.2 5.9 Inf 6.4 10.5 9.5 5.7	Eff ND ND ND ND ND APR Eff 2.0 2.2 1.9 1.3	10.3 12.1 3.9 8.8 Inf 4.3 7.4 12.2 9.5	MAY Eff 2.7 6.8 4.0 1.5	Inf 2.9 4.3 4.9 13.7 6.5 CHROM: Inf 9.3 5.8 5.1	JUN Eff ND ND 2.4 3.2 1.4 IUM (ug/L JUN Eff 2.0 1.5 2.9 ND	Inf 10.0 6.1 6.4 4.7 6.8) 2009 Inf 5.0 7.1 8.1 6.3	Eff 1.3 ND ND ND 0.3 JUL Eff 1.3 1.4 1.7 ND	6.8 5.2 8.8 6.9 6.9 5.3 5.8 5.1 5.7	Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <1.2 2.3 1.5 2.2	8.1 5.5 4.2 8.9 6.7 Inf	Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff 1.6 1.7 ND	8.0 5.5 3.2 44.4 15.3 Inf 13.1 5.2 4.8 6.9	Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6 1.3 3.1	8.5 5.0 7.6 7.0 Inf 7.5 3.0 4.3 14.3	2.3 1.5 3.0 2.3 NOV Eff 1.9 2.8 1.4 2.2	4.9 6.3 4.5 3.4 4.8 Inf 8.8 2.7 5.5 6.5	Eff ND ND 1.2 1.3 0.6 DEC Eff 2.0 1.8 1.4 1.6
1 2 3 4 Average	5.6 6 5.9 14.8 8.1 Inf 2.8 3.7 3.5	Eff ND	16.7 18.8 4.7 4.4 11.2 Inf 14.3 6.6 6.7	Efff 3.2 1.8 1.7 1.6 2.1 FEB Efff 2.7 1.8 3.4	11.7 7.7 6.3 7.6 8.3 Inf 4.3 5.6	Eff 3.5 1.8 2.0 ND 1.8 MAR Eff	3.9 7.1 9.3 3.2 5.9 Inf 6.4 10.5 9.5	Eff ND ND ND ND ND APR Eff 2.0 2.2 1.9	10.3 12.1 3.9 8.8 Inf 4.3 7.4 12.2	MAY Eff 2.7 6.8 4.0	Inf 2.9 4.3 4.9 13.7 6.5 CHROM: Inf 9.3 5.8 5.1	JUN Eff ND ND 2.4 3.2 1.4 IUM (ug/L JUN Eff 2.0 1.5 2.9	Inf 10.0 6.1 6.4 4.7 6.8) 2009 Inf 5.0 7.1 8.1	Eff 1.3 ND ND ND 0.3 JUL Eff 1.3 1.4	6.8 5.2 8.8 6.9 6.9 Inf 5.3 5.8 5.1	Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <1.2 2.3 1.5	8.1 5.5 4.2 8.9 6.7 Inf	Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff	8.0 5.5 3.2 44.4 15.3 Inf 13.1 5.2 4.8	Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6 1.3	8.5 5.0 7.6 7.0 Inf 7.5 3.0 4.3	2.3 1.5 3.0 2.3 NOV Eff 1.9 2.8 1.4	4.9 6.3 4.5 3.4 4.8 Inf 8.8 2.7 5.5	Eff ND ND 1.2 1.3 0.6 DEC Eff 2.0 1.8 1.4
1 2 3 4 Average	5.6 6 5.9 14.8 8.1 Inf 2.8 3.7 3.5 19.5	Eff ND LFff 1.4 ND ND ND ND ND ND LFff 1.42 ND	16.7 18.8 4.7 4.4 11.2 Inf 14.3 6.6 6.7 5.4	Efff 3.2 1.8 1.7 1.6 2.1 FEB Eff 2.7 1.8 3.4 2.7	11.7 7.7 6.3 7.6 8.3 Inf 4.3 5.6 6.1	Eff 3.5 1.8 2.0 ND 1.8 MAR Eff 2.2 2.0 1.7	3.9 7.1 9.3 3.2 5.9 Inf 6.4 10.5 9.5 5.7	Eff ND ND ND ND ND APR Eff 2.0 2.2 1.9 1.3	10.3 12.1 3.9 8.8 Inf 4.3 7.4 12.2 9.5	MAY Eff 2.7 6.8 4.0 1.5	Inf 2.9 4.3 4.9 13.7 6.5 CHROM: Inf 9.3 5.8 5.1 5.5	JUN Eff ND ND 2.4 3.2 1.4 IUM (ug/L JUN Eff 2.0 1.5 2.9 ND	Inf 10.0 6.1 6.4 4.7 6.8) 2009 Inf 5.0 7.1 8.1 6.3 6.6	Eff 1.3 ND ND ND 0.3 JUL Eff 1.3 1.4 1.7 ND	6.8 5.2 8.8 6.9 6.9 5.3 5.8 5.1 5.7	Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <1.2 2.3 1.5 2.2	8.1 5.5 4.2 8.9 6.7 Inf	Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff 1.6 1.7 ND	8.0 5.5 3.2 44.4 15.3 Inf 13.1 5.2 4.8 6.9	Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6 1.3 3.1	8.5 5.0 7.6 7.0 Inf 7.5 3.0 4.3 14.3	2.3 1.5 3.0 2.3 NOV Eff 1.9 2.8 1.4 2.2	4.9 6.3 4.5 3.4 4.8 Inf 8.8 2.7 5.5 6.5	Eff ND ND 1.2 1.3 0.6 DEC Eff 2.0 1.8 1.4 1.6
1 2 3 4 Average Week 1 2 3 4 Average	5.6 6 5.9 14.8 8.1 Inf 2.8 3.7 3.5 19.5	Eff ND	16.7 18.8 4.7 4.4 11.2 Inf 14.3 6.6 6.7 5.4	Eff 3.2 1.8 1.7 1.6 2.1 FEB Eff 2.7 1.8 3.4 2.7 2.7 FEB	11.7 7.7 6.3 7.6 8.3 Inf 4.3 5.6 6.1	Eff 3.5 1.8 2.0 ND 1.8 MAR Eff 2.2 2.0 1.7 2.0	3.9 7.1 9.3 3.2 5.9 Inf 6.4 10.5 9.5 5.7 8.0	Eff ND ND ND ND ND APR Eff 2.0 2.2 1.9 1.3 1.9	10.3 12.1 3.9 8.8 Inf 4.3 7.4 12.2 9.5	MAY Eff 2.7 6.8 4.0 1.5 3.8 MAY	Inf 2.9 4.3 4.9 13.7 6.5 CHROM: Inf 9.3 5.8 5.1 5.5 6.4 CHROM:	JUN Eff ND ND 2.4 3.2 1.4 IUM (ug/L JUN Eff 2.0 1.5 2.9 ND 1.6 IUM (ug/L JUN Ug/L JUN Ug/L JUN Ug/L JUN Ug/L JUN	Inf 10.0 6.1 6.4 4.7 6.8) 2009 Inf 5.0 7.1 8.1 6.3 6.6	Eff 1.3 ND ND ND 0.3 JUL Eff 1.3 1.4 1.7 ND 1.1	6.8 5.2 8.8 6.9 6.9 Inf 5.3 5.8 5.1 5.7	Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <1.2 2.3 1.5 AUG	8.1 5.5 4.2 8.9 6.7 Inf 7.7 7.2 6.3	Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff 1.6 1.7 ND 1.1	8.0 5.5 3.2 44.4 15.3 Inf 13.1 5.2 4.8 6.9	Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6 1.3 3.1 1.9	8.5 5.0 7.6 7.0 Inf 7.5 3.0 4.3 14.3	2.3 1.5 3.0 2.3 NOV Eff 1.9 2.8 1.4 2.2 2.1	4.9 6.3 4.5 3.4 4.8 Inf 8.8 2.7 5.5 6.5	Eff ND ND 1.2 1.3 0.6 DEC Eff 2.0 1.8 1.4 1.6 1.7
1 2 3 4 Average Week 1 2 3 4 Average	5.6 6 5.9 14.8 8.1 Inf 2.8 3.7 3.5 19.5 7.4	Eff ND ND ND ND ND ND JAN Eff 1.4 ND ND 2.3 0.9	16.7 18.8 4.7 4.4 11.2 Inf 14.3 6.6 6.7 5.4 8.3	Eff 3.2 1.8 1.7 1.6 2.1 FEB Eff 2.7 1.8 3.4 2.7 2.7 FEB Eff	11.7 7.7 6.3 7.6 8.3 Inf 4.3 5.6 6.1 5.3	Eff 3.5 1.8 2.0 ND 1.8 MAR Eff 2.2 2.0 1.7 2.0 MAR Eff	3.9 7.1 9.3 3.2 5.9 Inf 6.4 10.5 9.5 5.7 8.0	Eff ND ND ND ND ND APR Eff 2.0 2.2 1.9 1.3 1.9	10.3 12.1 3.9 8.8 Inf 4.3 7.4 12.2 9.5 8.4	MAY Eff 2.7 6.8 4.0 1.5 3.8 MAY Eff	Inf 2.9 4.3 4.9 13.7 6.5 CHROM: Inf 9.3 5.8 5.1 5.5 6.4 CHROM:	JUN EFF ND 2.4 3.2 1.4 IUM (ug/L JUN EFF ND 1.6 IUM (ug/L JUM L GL) ND 1.6 IUM (ug/L JUM EFF IUM (ug/L JUM EFF IUM (ug/L JUM EFF	Inf 10.0 6.1 6.4 4.7 6.8) 2009 Inf 5.0 7.1 8.1 6.3 6.6) 2010 Inf	Eff 1.3 ND ND ND 0.3 JUL Eff 1.3 1.4 1.7 ND 1.1	6.8 5.2 8.8 6.9 6.9 Inf 5.3 5.8 5.1 5.7	2.4 <1.2 2.1 1.3 1.5 AUG Eff <1.2 2.3 1.5 AUG Eff <1.5 AUG Eff AUG Eff	8.1 5.5 4.2 8.9 6.7 Inf 7.7 7.2 6.3 7.1	Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff 1.6 1.7 ND 1.1	8.0 5.5 3.2 44.4 15.3 Inf 13.1 5.2 4.8 6.9 7.5	Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6 1.3 3.1 1.9 OCT Eff	8.5 5.0 7.6 7.0 Inf 7.5 3.0 4.3 14.3 7.3	2.3 1.5 3.0 2.3 NOV Eff 1.9 2.8 1.4 2.2 2.1	4.9 6.3 4.5 3.4 4.8 Inf 8.8 2.7 5.5 6.5	Eff ND ND 1.2 1.3 0.6 DEC Eff 2.0 1.8 1.4 1.6 1.7
1 2 3 4 Average Week 1 2 3 4 Average	5.6 6 5.9 14.8 8.1 Inf 2.8 3.7 3.5 19.5 7.4	Eff ND ND ND ND ND ND ND ND ND JAN Eff 1.4 ND ND ND ND JAN Eff 1.4 ND ND L JAN Eff 1.4 ND ND L JAN L J J J J L J L J L J L J L J L J L J	16.7 18.8 4.7 4.4 11.2 Inf 14.3 6.6 6.7 5.4 8.3	Eff 3.2 1.8 1.7 1.6 2.1 FEB Eff 2.7 1.8 3.4 2.7 2.7 FEB Eff 1.9	11.7 7.7 6.3 7.6 8.3 Inf 4.3 5.6 6.1 5.3	Eff 3.5 1.8 2.0 ND 1.8 MAR Eff 2.2 2.0 1.7 2.0 MAR Eff 1.7	3.9 7.1 9.3 3.2 5.9 Inf 6.4 10.5 9.5 5.7 8.0	Eff ND ND ND ND ND APR Eff 2.0 2.2 1.9 1.3 1.9 APR Eff 2.8	10.3 12.1 3.9 8.8 Inf 4.3 7.4 12.2 9.5 8.4	MAY Eff 4.0 1.5 3.8 MAY Eff 2.0	Inf 2.9 4.3 4.9 13.7 6.5 CHROM: Inf 9.3 5.8 5.1 5.5 6.4 CHROM: Inf	JUN Eff ND ND 2.4 3.2 1.4 IUM (ug/L JUN Eff 2.0 1.5 2.9 ND 1.6 IUM (ug/L JUN Eff 1.7	Inf 10.0 6.1 6.4 4.7 6.8) 2009 Inf 5.0 7.1 8.1 6.3	Eff 1.3 ND ND ND 0.3 JUL Eff 1.3 1.4 1.7 ND 1.1 JUL Eff 1.6	6.8 5.2 8.8 6.9 6.9 Inf 5.3 5.8 5.1 5.7 5.5	Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <1.2 2.3 1.5 2.2 1.5 AUG Eff 2.1	8.1 5.5 4.2 8.9 6.7 Inf 7.7 6.3 7.1	Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff 1.6 1.7 ND 1.1	8.0 5.5 3.2 44.4 15.3 Inf 13.1 5.2 4.8 6.9 7.5	Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6 1.3 3.1 1.9 OCT Eff 1.9	8.5 5.0 7.6 7.0 Inf 7.5 3.0 4.3 7.3	2.3 1.5 3.0 2.3 NOV Eff 1.9 2.8 1.4 2.2 2.1	4.9 6.3 4.5 3.4 4.8 Inf 8.8 2.7 5.5 6.5 5.9	Eff ND ND 1.2 1.3 0.6 DEC Eff 2.0 1.8 1.4 1.6 1.7 DEC Eff
1 2 3 4 Average Week 1 2 3 4 Average Week 1 2 3 4 Average	5.6 6 5.9 14.8 8.1 Inf 2.8 3.7 3.5 19.5 7.4	Eff ND	16.7 18.8 4.7 4.4 11.2 Inf 14.3 6.6 6.7 5.4 8.3	Eff 3.2 1.8 1.7 1.6 2.1 FEB Eff 2.7 1.8 3.4 2.7 2.7 FEB Eff 1.9 2.4	11.7 7.7 6.3 7.6 8.3 Inf 4.3 5.6 6.1 5.3	Eff 3.5 1.8 2.0 ND 1.8 MAR Eff 2.2 2.0 1.7 2.0 MAR Eff 1.7 1.7	3.9 7.1 9.3 3.2 5.9 Inf 6.4 10.5 9.5 5.7 8.0 Inf 7.6 10.6	Eff ND ND ND ND ND APR Eff 2.0 2.2 1.9 1.3 1.9 APR Eff 2.8 2.5	10.3 12.1 3.9 8.8 Inf 4.3 7.4 12.2 9.5 8.4	MAY Eff 2.7 3.8 MAY Eff 2.0 2.0	Inf 2.9 4.3 4.9 13.7 6.5 CHROM: Inf 9.3 5.8 5.1 5.5 6.4 CHROM: Inf 12.7 7.7	JUN Eff ND ND 2.4 3.2 1.4 IUM (ug/L JUN Eff 2.9 ND 1.6 IUM (ug/L JUN Eff 1.7 1.9	Inf 10.0 6.1 6.4 4.7 6.8) 2009 Inf 5.0 7.1 8.1 6.3 6.6) 2010 Inf 6.3 5.8	UL Eff 1.1 JUL Eff 1.6 1.8	6.8 5.2 8.8 6.9 6.9 Inf 5.3 5.1 5.7 5.5	Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <2.3 1.5 2.2 1.5 AUG Eff 2.1 2.6	8.1 5.5 4.2 8.9 6.7 Inf 7.7 7.2 6.3 7.1	Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff 1.6 1.7 ND 1.1 SEP Eff 2.5 2.4	8.0 5.5 3.2 44.4 15.3 Inf 13.1 5.2 4.8 6.9 7.5	OCT Eff 1.9 3.3	8.5 5.0 7.6 7.0 1nf 7.5 3.0 4.3 14.3 7.3	2.3 1.5 3.0 2.3 NOV Eff 1.9 2.8 1.4 2.2 2.1	4.9 6.3 4.5 3.4 4.8 Inf 8.8 2.7 5.5 6.5 5.9	Eff ND ND 1.2 1.3 0.6 DEC Eff 2.0 1.8 1.4 1.6 1.7 DEC Eff
1 2 3 4 Average Week 1 2 3 4 Average Week 1 2 3 3 4 Average	5.6 6 5.9 14.8 8.1 Inf 2.8 3.7 3.5 19.5 7.4 Inf 5.6 9.7 5.1	Eff ND	16.7 18.8 4.7 4.4 11.2 Inf 14.3 6.6 6.7 5.4 8.3	Eff 3.2 1.8 1.7 1.6 2.1 FEB Eff 2.7 1.8 3.4 2.7 2.7 FEB Eff 1.9	11.7 7.7 6.3 7.6 8.3 Inf 4.3 5.6 6.1 5.3 Inf 6.5 6.4 7.0	Eff 3.5 1.8 2.0 ND 1.8 MAR Eff 2.2 2.0 1.7 2.0 MAR Eff 1.7 2.2	3.9 7.1 9.3 3.2 5.9 Inf 6.4 10.5 9.5 5.7 8.0 Inf 7.6 10.6 9.8	Eff ND ND ND ND ND APR Eff 2.0 2.2 1.9 1.3 1.9 APR Eff 2.8 2.5 1.7	10.3 12.1 3.9 8.8 Inf 4.3 7.4 12.2 9.5 8.4	MAY Eff 2.7 6.8 4.0 1.5 3.8 MAY Eff 2.0 2.0 6.0 6.0	Inf 2.9 4.3 4.9 13.7 6.5 CHROM: Inf 9.3 5.8 5.1 5.5 6.4 CHROM: Inf	JUN Eff ND ND 2.4 3.2 1.4 IUM (ug/L JUN Eff 2.0 1.5 2.9 ND 1.6 IUM (ug/L JUN Eff 1.7	Inf 10.0 6.1 6.4 4.7 6.8) 2009 Inf 5.0 7.1 8.1 6.3 6.6) 2010 Inf 6.3 5.8 4.1	Eff 1.3 ND ND ND 0.3 JUL Eff 1.3 1.4 1.7 ND 1.1 JUL Eff 1.6 1.8 1.9	6.8 5.2 8.8 6.9 6.9 Inf 5.3 5.8 5.1 5.7 5.5	Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <1.2 2.3 1.5 2.2 1.5 AUG Eff 2.1 6 6 1.2	8.1 5.5 4.2 8.9 6.7 Inf 7.7 7.2 6.3 7.1	Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff 1.6 1.7 ND 1.1 SEP Eff 2.5 2.4 2.5	8.0 5.5 3.2 44.4 15.3 Inf 13.1 5.2 4.8 6.9 7.5	Eff ND <1.2 1.4 6.5 2.0 OCT Eff 1.5 1.6 1.3 3.1 1.9 OCT Eff 1.9 OCT Eff 1.9 OCT Eff 1.9 OCT Eff 1.9	8.5 5.0 7.6 7.0 Inf 7.5 3.0 4.3 14.3 7.3	2.3 1.5 3.0 2.3 NOV Eff 1.9 2.8 1.4 2.2 2.1 NOV Eff ND 2.2 ND	4.9 6.3 4.5 3.4 4.8 Inf 8.8 2.7 5.5 6.5 5.9	Eff ND ND 1.2 1.3 0.6 DEC Eff 2.0 1.8 1.4 1.6 1.7 DEC Eff <1.2 2.2
1 2 3 4 Average Week 1 2 3 4 Average Week 1 2 3 4 Average	5.6 6 5.9 14.8 8.1 Inf 2.8 3.7 3.5 19.5 7.4	Eff ND	16.7 18.8 4.7 4.4 11.2 Inf 14.3 6.6 6.7 5.4 8.3	Eff 3.2 1.8 1.7 1.6 2.1 FEB Eff 2.7 1.8 3.4 2.7 2.7 FEB Eff 1.9 2.4	11.7 7.7 6.3 7.6 8.3 Inf 4.3 5.6 6.1 5.3	Eff 3.5 1.8 2.0 ND 1.8 MAR Eff 2.2 2.0 1.7 2.0 MAR Eff 1.7 1.7	3.9 7.1 9.3 3.2 5.9 Inf 6.4 10.5 9.5 5.7 8.0 Inf 7.6 10.6	Eff ND ND ND ND ND APR Eff 2.0 2.2 1.9 1.3 1.9 APR Eff 2.8 2.5	10.3 12.1 3.9 8.8 Inf 4.3 7.4 12.2 9.5 8.4	MAY Eff 2.7 3.8 MAY Eff 2.0 2.0	Inf 2.9 4.3 4.9 13.7 6.5 CHROM: Inf 9.3 5.8 5.1 5.5 6.4 CHROM: Inf 12.7 7.7	JUN Eff ND ND 2.4 3.2 1.4 IUM (ug/L JUN Eff 2.9 ND 1.6 IUM (ug/L JUN Eff 1.7 1.9	Inf 10.0 6.1 6.4 4.7 6.8) 2009 Inf 5.0 7.1 8.1 6.3 6.6) 2010 Inf 6.3 5.8	UL Eff 1.1 JUL Eff 1.6 1.8	6.8 5.2 8.8 6.9 6.9 Inf 5.3 5.1 5.7 5.5	Eff 2.4 <1.2 2.1 1.3 1.5 AUG Eff <2.3 1.5 2.2 1.5 AUG Eff 2.1 2.6	8.1 5.5 4.2 8.9 6.7 Inf 7.7 7.2 6.3 7.1	Eff 1.7 1.5 1.4 2.0 1.7 SEP Eff 1.6 1.7 ND 1.1 SEP Eff 2.5 2.4	8.0 5.5 3.2 44.4 15.3 Inf 13.1 5.2 4.8 6.9 7.5	OCT Eff 1.9 3.3	8.5 5.0 7.6 7.0 1nf 7.5 3.0 4.3 14.3 7.3	2.3 1.5 3.0 2.3 NOV Eff 1.9 2.8 1.4 2.2 2.1	4.9 6.3 4.5 3.4 4.8 Inf 8.8 2.7 5.5 6.5 5.9	Eff ND ND 1.2 1.3 0.6 DEC Eff 2.0 1.8 1.4 1.6 1.7 DEC Eff

											COPPI	ER (ug/L)	2005											
Mode	Inf	JAN Eff	Inf	FEB Eff	Inf	MAR Eff	Inf	APR Eff	Inf	MAY Eff	Tof	JUN Eff	Inf	JUL Eff	Inf	AUG Eff	Inf	SEP Eff	Inf	OCT Eff	Inf	NOV Eff	Inf	DEC Eff
Week 1	TIIT	ETT	83	72	62	23	98	27	TIIT	ETT	Inf 108	50	97	22	112	23	96	30	142	18	TIIT	ETT	71	27
2	74	39	98	37	85	30	134	27	95	28	106	25	119	17	97	20	118	16	94	14	173	25	62	34
3	73	25	122	30	69	22	120	44	82	25	118	31	68	34	102	19	89	13	61	31	132	32	62	22
4	85	36	67	28	82	22	92	28	114	34	111	25	204	33	97	22	105	19	115	25	92	24	49	22
Average	77	33	93	42	75	24	111	32	97	29	111	33	122	27	101	21	102	20	103	22	133	27	61	26
											COPPI	ER (ug/L)	2006											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1 2	115 83	28 22	49	20	66	19	64	22 24	169 123	19 17	104 114	26 27	117 205	24 18	95 97	18	108	17 13	112	14	109	15	84	ND ND
3	72	19	86 47	30 20	62 60	18 11	82 71	23	104	19	89	20	101	26	100	22 24	106 73	13 29	143 57	42 8	76 67	39 12	76 79	ND
4	92	20	51	17	-		115	42	101	28	105	28	71	23	106	15	,,		123	14	77	19	62	ND
Average	91	22	58	22	63	16	83	28	124	21	103	25	124	23	100	20	96	20	109	20	82	21	75.3	ND
											CODD	-D ((1.)	2007											
		JAN		FEB		MAR		APR		MAY	COPPI	ER (ug/L) JUN	2007	JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	92	15	52	26	79	14	104	15	79	9	139	15	106	14	96	48	85	18	117	18	90	11		
2	80	14	32	16	87	16	93	15	89	8	100	12	118	33	112	10	96	16	97	14	94	18	75	11
3 4	60 99	15 14	47	13	94 99	14 10	92 99	12 17	97 91	9	102	11	135 112	27 65	84 102	51 11	120 117	10 8	76 93	7 6	68 91	21 11	87 79	12 17
Average	83	15	44	18	90	14	97	15	89	9	114	13	118	35	99	30	105	13	96	11	86	15	80	13
										-														
											COPPI	ER (ug/L)	2008											
Week	Inf	JAN Eff	Inf	FEB Eff	Inf	MAR Eff	Inf	APR Eff	Inf	MAY Eff	Inf	JUN Eff	Inf	JUL Eff	Inf	AUG Eff	Inf	SEP Eff	Inf	OCT Eff	Inf	NOV Eff	Inf	DEC Eff
1	60	11	66	17	88	20	75	22	TIII	EII	73	22	111	15	113	20	70	20	91	19	1111	EII	130	25
2	100	14	153	16	93	23	93	21	86	22	100	24	102	15	106	14	97	21	105	17	91	18	111	22
3	84	10	76	15	84	21	98	18	77	18	117	35	109	14	131	16	89	22	48	17	88	19	81	24
4	71	8	63	18	77	15	91	17	70	21	121	17	103	22	125	16	110	78	106	23	106	22	78	20
Average	79	11	90	17	86	20	89	20	78	20	103	25	106	17	119	17	92	35	88	19	95	20	100	23
											COPPI	ER (ug/L)	2009											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1 2	64 85	28 21	138 106	34 26	103	37	104 105	17 13	118 125	25 23	127 103	22 15	120 110	22 22	134 117	22 21	99	17	253.0 90.2	13.3 16.4	107.0 52.0	15.4 16.9	110 40.6	15.6 18.6
3	95	21	103	37	98	34	105	14	135	25 15	103	22	143	22	45	13	108	20	113.0	16.4	69.5	14.3	105	16.4
4	107	20	97	38	108	19	113	13	127	13	124	10	110	20	107	20	107	15	91.7	25.7	105.0	11.3	105	16.2
Average	88	23	111	34	103	30	107	14	126	19	115	17	121	21	101	19	105	17	137.0	18	83.4	14.5	90.2	16.7
											CUDDI	ER (ug/L)	2010											
		JAN		FEB		MAR		APR		MAY	COFFI	JUN	2010	JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	112.0	24.7	102	22.4	89.3	1.7	108	23.8	123	20.8	156	24.7	95.8	19.5	121.0	13.9	99.1	20.2	137.0	30.8	227.0	20.4	100.0	10.0
2	147.0	19.4 15.4	90.5 83.9	19.1 17.8	98.7 112	1.7 2.2	107 117	24.8 15.6	128 104	22.2 28.5	123 88.6	15.7 10.9	87.4 59.6	16.6 17.4	145.0 136.0	31.0 13.6	102.0 105.0	25.1 17.9	129.0 92.1	42.9 29.1	98.0 101.0	20.7 46.8	109.0 110.0	19.8 18.5
4	61.7 91.7	20.8	03.3	17.0	105	1.9	117	15.0	85.9	24.1	00.0	10.3	67.6	17.4	118.0	17.5	113.0	16.9	104.0	18.0	101.0	14.6	59.1	28.2
*******			00.4	10.0							122 5	17.1												
Average	103.1	20.1	92.1	19.8	101.3	1.9	111.5	19.9	110.2	23.9	122.5	17.1	77.6	16.8	130.0	19.0	104.8	20.0	115.5	30.2	132.5	25.6	92.7	22.2

											LEAD	ug/L) 200	2 5											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1			1.5	ND	ND	ND	ND	ND			2.1	<1.4	5	ND	3.5	ND	1.8	ND	4.7	ND			ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	4.3	ND	3.3	ND	3.4	ND	1.6	ND	4	ND	2.6	ND	2.3	ND	3.1	ND
3	ND	ND	ND	ND	ND	ND	ND	<1.4	2.9	ND	2.5	ND	2.8	ND	1.6	ND	3.9	ND	ND	ND	3.4	ND	ND	ND
	ND ND	ND ND	ND 0.4	ND ND	ND ND	ND ND	ND ND	ND Ø	4.8	ND ND	3.3	ND 0	3.4	ND ND	ND 1 7	ND ND	6.1	ND ND	3.5 2.7	ND ND	5	ND ND	ND 0	ND ND
Average	ND	ND	0.4	ND	ND	ND	ND	0	4	ND	2.8	ю	3.4	ND	1.7	ND	4	ND	2.7	ND	3.6	ND	0.8	ND
											LEAD	ug/L) 200	96											
		JAN		FEB		MAR		APR		MAY		JÚN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	3.6	2.6	2.5	ND	2.3	ND	3.1	ND	6	ND	2.3	ND	2.2	ND	5.8	0	4.9	ND	3.7	ND	4.9	ND	2.8	ND
2	3.5	ND	2.7	ND	3.5	ND	7.5	1.9	4.2	1.9	3.2	1.8	11.7	1.8	5.7	1.5	5.7	ND	2.2	ND	3.2	ND	ND	ND
3	1.7	ND	3.4	2.1	ND	ND	5.1	ND	4.3	ND	4.9	ND	10.9	5.3	5.8	3	3.7	ND	ND	ND	1.9	ND	2.4	ND
4	3.1	2.3	3.4	ND			5.8	ND	3.8	ND .	5.1	ND	4.1	ND 1 0	4.4	1.7			ND .	ND	2.7	ND	ND 1 2	ND
Average	3.0	1.2	3.0	0.5	1.9	ND	5.4	0.5	4.6	0.5	3.9	0.5	7.2	1.8	5.4	1.6	4.8	ND	1.5	ND	3.2	ND	1.3	ND
											LEAD	ug/L) 200	2 7											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	4.6	ND	ND	ND	6.6	ND	3.1	ND	ND	ND	2.9	ND	ND	ND	3.7	ND	ND	ND	3.8	ND	2.9	ND		
2	ND	ND	ND	ND	5.8	ND	ND	ND	2.2	ND	ND	ND	6.7	ND	ND	ND	ND	ND	2.7	ND	2.1	ND	ND	ND
3	ND	ND	ND	ND	5.3	ND	4.2	ND	ND	ND	ND	ND	2.9	ND	ND	ND	ND	ND	ND	ND	2.2	ND	ND	ND
4	5.6	ND			3.9	ND	2.5	ND	ND	ND			ND	ND	2.2	ND	2.5	ND	ND	ND	5.4	ND	ND	ND
Average	2.6	ND	ND	ND	5.4	ND	2.5	ND	2.2	ND	1	ND	2.4	ND	1.5	ND	2.5	ND	1.5	ND	3.2	ND	ND	ND
											LEAD	ug/L) 200	30											
		JAN		FEB		MAR		APR		MAY	LLAD	JUN	50	JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	6.7	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	2.4	ND	2.4	ND	3.4	ND			4.8	ND
2	2.9	ND	5.3	ND	ND	ND	ND	ND	4.3	ND	ND	ND	ND	ND	2.9	ND	ND	ND	4	ND	3.3	ND	4.2	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	3	ND	ND	ND	ND	ND	3.3	ND	ND	ND	2.5	ND	3	<2.0	3.6	ND
4	2.5	ND	ND	ND	ND	ND	ND	ND	5.6	ND	ND	ND	ND	ND	3.3	ND	ND	ND	3	ND	4.9	ND	3.3	ND
Average	3	ND	1.3	ND	ND	ND	ND	ND	4.3	ND	ND	ND	ND	ND	2.98	ND	0.6	ND	3.23	ND	3.7	0	4.0	ND
											LEAD	ug/L) 200	20											
		JAN		FEB		MAR		APR		MAY	22/10	JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	5.3	ND			2.9	ND	3.1	ND	3.3	ND	3.3	ND	3.4	ND			7.9	ND	3.0	ND	2.7	ND
2	ND	ND	3.2	ND	ND	ND	3.8	ND	2.9	ND	3.6	ND	3.8	ND	4.5	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	2.6	ND	2.4	ND	ND	ND	2.2	ND	3.9	ND	3.2	ND	4.7	ND	0	ND	ND	ND	2.9	ND	ND	ND	2.3	ND
4	2.7	ND	2.2	ND	2.9	ND	2.5	ND	3.8	ND	5.2	ND	2.6	ND	4.3	ND	ND	ND	2	ND	2.7	ND	2.7	ND
Average	1.3	ND	3.3	ND	1	ND	2.9	ND	3.4	ND	3.8	ND	3.6	ND	3.1	ND	ND	ND	3.20	ND	1.4	ND	1.9	ND
											LEAD	/1 \ 20:	10											
		JAN		FEB		MAR		APR		MAY	LEAD	ug/L) 20: JUN	TO	JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	3.2	ND	3.2	ND	2.3	ND	3.9	ND	4.8	<2.0	5.2	ND	2.1	ND	4	ND	2.7	ND	3.4	ND	3.1	ND		
2	4.4	ND	2.7	ND	4.4	ND	5.8	ND	5.7	ND	3.3	ND	5.5	ND	4.3	ND	3.7	ND	15.8	ND	2.6	ND	0.9	ND
3	2.5	ND	2.2	ND	3.7	ND	3.6	ND	3.5	ND	2.5	ND	ND	ND	4.3	ND	2.2	ND	2.0	12.1	2.4	ND	2.0	ND
4	4.2	ND	2.7		3.7	ND	4	ND	2.1	ND			2.3	ND	3.7	ND	2.9	ND	2.3	2.3	3.3	D	ND	ND
Average	3.6	ND	2.7	ND	3.5	ND	4.3	ND	4.0	0.0	3.7	ND	2.5	ND	4.1	ND	2.9	ND	5.9	3.6	2.9	ND	1.0	ND

											NICKE	L (ug/L)	2005											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1			12	10	6	6	8	18	4.0	_	12	13	8	8	10	9	8	7	9	7		_	11	12
2	9 8	9 7	5 16	11 4	7 8	8 7	9 8	4 8	10 8	7 7	10 12	21 18	9 8	5 7	8 9	7 7	28 9	11 7	11 8	6 6	16 10	7 11	13 10	7 8
4	9	8	11	11	13	8	7	7	10	12	14	11	10	8	6	7	8	7	12	7	9	8	15	9
Average	9	8	11	9	9	7	8	9	9	9	12	16	9	7	8	8	13	8	10	7	12	9	12	9
Average	,	Ü		,	,	,	Ü	,	,	,		10	,	,	Ü	Ü	13	Ü	10	,		,		,
											NICKE	L (ug/L)	2006											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	19	7	9	8	8	7	8	7	10	8	18	12	15	11	9	7	24	14	19	10	17	12	11	10
2	11	8	8	7	9	7	13	5	13	6	14	8	20	10	12	8	19	12	16	10	16	10	8	9
3	12	7 7	9 8	7 7	8	6	9	6	10 9	8 7	21	13 8	12	9	25	13 9	9	7	22	17	9	10	14	11
Average	10 13	7	9	7	8	7	14 11	13 8	11	7	13 17	10	19 17	10	13 15	9	17	11	28 21	17 14	10 13	10 10.5	13 12	18 12
Average	15	,	,	,	0	,	11	0	11	,	17	10	17	10	15	,	17	11	21	14	15	10.5	12	12
											NICKE	L (ug/L)	2007											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	10	6	23	17	8	7	16	10	11	7	11	7	10	6	10	9	17	14	13	7	14	8		
2	17	11	9	10	10	8	12	9	9	6	12	7	11	6	15	8	12	7	12	9	13	8	21	13
3	15	11	11	9	15	11	17	10	10	6	9	6	16	7	16	11	11	5	8	6	8	6	17	10
4	16	9			34	19	11	7	10	6			14	8	11	9	18	9	11	7	11	7	12	7
Average	15	9	14	12	17	11	14	9	10	6	11	7	13	7	13	9	15	9	11	/	12	7	17	10
											NICKE	L (ug/L)	2008											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	11	8	32	23	25	12	10	7			9	7	18	12	12	7	18	10	13	9			10	5
2	11	8	23	11	12	9	9	5	21	19	9	6	13	9	10	7	11	7	9	7	10	7	11	6
3	12	8	7	6	14	7	12	7	12	8	11	7	12	8	17	10	16	11	9	8	7	5	8	5
4	20	14	8	6	10	7	8	5	11	8	31	17	8	6	11	7	22	11	31	18	14	9	7	5
Average	14	10	18	12	15	9	10	6	15	12	15	9	13	9	13	8	17	10	16	11	10	7	9	5
											NICKE	L (ug/L)	2009											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	6	5	24	15			9	7	8	6	15	9	12	7	9	7			25.1	6.6	8.6	6.7	12.5	5.8
2	7	5	9	7	7	6	16	10	14	15	11	8	10	6	8	5	15	10	9.0	6.6	5.5	7.1	6.7	6.6
3	6	4	14	10	8	6	10	6	13	8	7	6	11	6	9	6	13	8	8.9	5.3	7.7	5.1	9.9	5.4
4	30	16	10	9	8	6	8	5	15	9	7	5	11	6	9	6	13	7	13.0	8.3	27.6	10.4	8.1	5
Average	12	8	14	10	8	6	11	7	13	10	10	7	11	6	9	6	14	8	14.0	6.7	12.4	7.3	9.3	5.7
											NTCK	L (ug/L)	2010											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	T C	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
	Inf									0.2	12.7	7.1	12.1	7.0	14.9	0	9.7	8	11.2	6.7	10.1			
1	7.5	4.8	12.4	8.5	13.4	9.5	15.3	7.7	13.2	8.3	13.7	/.1	12.1	7.2	14.9	8	9.7	٥	11.2	0.7	10.1	5.4		1
1 2			12.4 10.1	8.5 6.9	13.4 9.3	9.5 7.4	15.3 12.7	7.7 6.6	13.2 16.2	9.1	8.6	6.4	12.1	7.4	18.5	8.3	14	9.3	18.6	10.5	15.6	9.1	8.2	5.3
	7.5	4.8																					8.2 11.6	5.3 6.9
2	7.5 16.4	4.8 9.9	10.1	6.9	9.3	7.4	12.7	6.6	16.2	9.1	8.6	6.4	12.4	7.4	18.5	8.3	14	9.3	18.6	10.5	15.6	9.1		

											MERCU	RY (ug/L)	2005											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	0.62	ND	ND	ND	0.16	ND	ND	ND	0.3	ND	0.11	ND	0.12	ND	ND	ND	1.03	ND 10.00	0.22	ND	0.15	ND
2	ND ND	ND ND	0.11 0.27	ND ND	ND 0.11	ND ND	ND 0.19	ND ND	ND 0.1	ND ND	0.13 0.25	ND ND	ND ND	ND ND	0.1 0.16	ND ND	0.22 ND	ND ND	0.23 0.39	<0.09 ND	0.23 0.11	ND ND	0.1 0.3	ND ND
4	ND	ND	0.1	ND	ND	ND	ND	ND	0.71	ND	0.13	ND	0.89	ND	ND	ND	0.15	ND	0.21	ND	ND	ND	ND	ND
Average	ND	ND	0.28	ND	0.03	ND	0.09	ND	0.27	ND	0.2	ND	0.25	ND	0.1	ND	0.09	ND	0.47	0	0.11	ND	0.14	ND
0-																								
											MERCU	RY (ug/L)	2006											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	0.87	ND	ND	ND	ND	ND	0.1	ND	0.27	ND	ND	ND	ND 0. EE	ND	0.1	ND 10.00	0.59	ND	ND	ND	0.18	ND	0.44	ND
2	0.14 0.19	ND ND	ND 0.35	ND ND	0.37 ND	ND ND	0.11 0.16	ND ND	ND 0.23	ND ND	ND ND	ND ND	0.55 ND	ND ND	0.13 0.28	<0.09 ND	ND ND	ND ND	0.66 0.15	ND ND	0.22 ND	ND ND	ND 1.11	ND ND
4	ND	ND	0.11	ND	ND	ND	0.10	ND	0.36	0.14	0.1	ND	0.12	ND	0.18	ND	ND	ND	0.09	ND	0.25	ND	0.18	ND
Average	0.3	ND	0.12	ND	0.12	ND	0.12	ND	0.22	0.04	0.03	ND	0.16	ND	0.17	0	0.2	ND	0.30	ND	0.16	ND	0.43	ND
											MERCU	RY (ug/L)	2007											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	ND	ND	0.13	ND	0.10	ND	0.27	ND	ND	ND	0.17	ND	0.11	ND	ND	ND	0.6	ND	0.12	ND	ND	ND
2	ND	ND	ND 0.12	ND	ND	ND	0.10	ND	0.12	ND	ND	ND ND	0.32	ND ND	0.22	ND ND	0.20	ND	0.22	ND	0.11	ND	ND ND	ND
4	ND ND	ND ND	0.12	ND	0.1 0.16	ND ND	0.10 0.13	ND ND	0.17 ND	ND ND	ND	ND	0.1 0.24	ND ND	ND 1.9	ND ND	0.26 0.20	ND ND	0.13 0.2	ND ND	ND ND	ND ND	ND	ND ND
Average	ND	ND	0.04	ND	0.10	ND ND	0.11	ND	0.14	ND ND	ND	ND	0.24	ND ND	0.13	ND	0.17	ND ND	0.29	ND ND	0.06	ND ND	ND	ND
											MERCU	RY (ug/L)	2008											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	0.14	ND	ND	ND	0.10	ND			0.24	ND	0.31	ND	0.13	ND	0.13	ND	0.12	ND			ND	ND
2	0.11 0.16	ND ND	0.26 0.25	ND ND	ND 0.12	ND ND	0.14 0.19	ND ND	0.11 0.14	ND ND	ND 0.16	ND ND	0.14 0.3	ND ND	0.19 0.25	ND ND	0.21 0.13	ND ND	0.13 0.56	ND ND	ND 0.12	ND ND	0.1 ND	ND ND
4	0.21	ND	ND	ND	0.12	<0.09	0.79	ND	ND	ND	0.3	ND	0.25	0.13	0.12	ND	0.28	ND	0.17	ND	ND	ND	ND	ND
Average	0.12	ND	0.16	ND	0.06	0	0.3	ND	0.08	ND	0.18	ND	0.25	0.03	0.17	ND	0.19	ND	0.25	ND	0.04	ND	0.03	ND
0-																								
											MERCU	RY (ug/L)	2009											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf ND	Eff ND	Inf ND	Eff ND	Inf	Eff	Inf 0.15	Eff	Inf	Eff ND	Inf 0.19	Eff ND	Inf 0.13	Eff ND	Inf	Eff ND	Inf	Eff	Inf	Eff ND	Inf	Eff	Inf 0.37	Eff 0.23
1 2	0.1	ND ND	ND ND	ND ND	ND	ND	0.13	ND ND	0.21 0.15	ND ND	0.19	ND ND	ND	ND ND	0.38 0.19	ND ND	ND	ND	0.21 ND	ND	0.26 ND	ND ND	ND	ND
3	0.14	ND	ND	ND	ND	ND	0.11	ND	0.13	ND	0.2	ND	0.67	ND	ND	ND	0.14	ND	ND	ND	ND	ND	ND	ND
4	0.17	ND	ND	ND	ND	ND	ND	ND	0.16	ND	0.35	ND	0.18	ND	0.18	ND	0.54	ND	0.14	ND	ND	ND	ND	ND
Average	0.1	ND	ND	ND	ND	ND	0.15	ND	0.13	ND	0.26	ND	0.25	ND	0.19	ND	0.23	ND	0.09	ND	0.07	ND	0.09	0.06
											MERCU	RY (ug/L)	2010					CED.		0.57				250
Week	Inf	JAN Eff	Inf	FEB Eff	Inf	MAR Eff	Inf	APR Eff	Inf	MAY Eff	Inf	JUN Eff	Inf	JUL Eff	Inf	AUG Eff	Inf	SEP Eff	Inf	OCT Eff	Inf	NOV Eff	Inf	DEC Eff
week 1	ND	ND ND	0.17	ND ND	ND	ND ND	ND ND	ND ND	0.1	ND ND	0.35	ND ND	0.13	0.00998	0.39	0.00776	0.154	0.00518	0.144	0.00728	0.477	0.00749	THE	ETT
2	ND							ND	0.37	ND	0.33	ND	0.13	0.00558	0.06	0.00776	0.134	0.00318	0.067	0.00728	0.0316	0.00894	0.0625	0.00815
	0.99	ND	0.32	ND	0.11	ND	ND																	
3	0.99 0.25	ND ND	0.32 0.14	ND ND	0.11 ND	ND ND	ND ND	ND	0.28	ND	0.1	ND	0.03	0.00537	0.06	0.0050	0.024	0.0058	0.0407	0.00545	0.0318	0.022	0.078	0.00013

																							T	
											SILV	ER (ug/L)	2005											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1			0.2	ND	ND	ND	2.1	ND			2.2	0.7	0.6	ND	1.3	ND	0.8	ND	2.7	ND			0.6	ND
2	ND ND	ND ND	0.8	ND ND	ND 0.4	ND ND	2.9 3.2	0.3 <0.2	2.3	0.3 ND	2.1	ND ND	1.9 0.9	ND ND	2.1 0.6	ND ND	2.9	<0.2 ND	0.6 ND	ND ND	1.3	ND ND	ND ND	ND ND
4	ND ND	ND ND	0.9	ND	0.8	ND	0.9	ND	2.4	ND	1	ND ND	1	ND	ND	ND	2.4	ND	1.2	ND ND	10	ND	ND	ND
Average	ND	ND	1	ND	0.3	ND	2.3	0.1	2.3	0.1	2	0.2	1.1	ND	1	ND	2.1	0	1.1	ND	1.3	ND	0.2	ND
											SILV	ER (ug/L)	2006											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	1.6	ND	ND	ND	0.2	<0.2	ND	ND	ND	ND	ND	ND	2.6	0.4	1.1	ND	1.1	ND	2.6	ND	2.1	0.3	3.6	ND
2	1.2	ND	ND	ND	0.3	0.2	ND	ND	3	ND	2.9	ND	4.1	ND	1.3	ND	0.4	ND	3.0	ND	1.4	ND	3.2	ND
3	0.7	ND	ND	ND	1.3	ND	1.5	ND	2.3	ND	1.7	0.4	1	0.2	1.8	ND	0.8	0.4	1.5	ND	1.2	ND	2.8	0.6
4	0.5 1.0	ND ND	0.2	ND ND	0.6	0.1	5.7 1.8	ND ND	1.8	0.9	0.4 1.3	0.9	2.0	ND 0.2	1.9	ND ND	0.8	0.1	3.3 2.6	0.2	3.1 2.0	0.2	3.4	0.5
Average	1.0	ND	0.1	ND	0.6	0.1	1.0	NU	1.0	0.2	1.3	0.5	2.0	0.2	1.5	ND	0.8	0.1	2.0	0.1	2.0	0.1	3.4	0.5
			-	-		1					SILVER (u	g/L) 2007	,		1	1		-		1	1			
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	2.1	ND	0.5	ND	1.2	ND	2.4	ND	2.6	ND	3.6	ND	1.6	ND	1.4	ND	ND	ND	1.7	ND	1.6	ND		
2	1.2	ND	ND	ND	1.1	ND	1.7	ND	2.4	ND	2.0	ND	2.1	ND	2.4	ND	1.9	ND	0.7	ND	1.9	ND	ND	ND
3	1.8	0.5	ND	ND	2.1	ND	1	ND	2.8	ND	1.2	ND	2.4	ND	1.2	ND	1.9	ND	ND	ND	ND	ND	ND	ND
4	1.2	ND	0.0	.un	3	ND	ND 1 2	ND	3	0.6		.un	1.9	ND	1.1	ND	2.1	ND	1.8	ND	0.9	ND	0.6	ND
Average	1.6	0.1	0.2	ND	1.9	ND	1.3	ND	2.7	0.6	2.3	ND	2.0	ND	1.5	ND	1.5	ND	1.1	ND	1.1	ND	0.2	ND
											SILVER (u	g/I) 2008	2											_
		JAN		FEB		MAR		APR		MAY	SILVEN (C	JUN	,	JUL		AUG		SEP		OCT		NOV	T	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	ND	ND	1.9	0.7	ND	ND			0.8	ND	2.2	ND	1.3	ND	1.1	ND	1.3	<0.4			2.8	0.4
2	1.3	ND	2.6	ND	1.3	0.8	1.6	ND	1.3	ND	1.9	ND	2.0	0.6	1.2	ND	1.8	ND	1.6	<0.4	0.7	ND	1.1	ND
3	1.0	ND	1.4	ND	1.7	1.1	2.4	ND	1.3	ND	2.7	ND	1.4	ND	1.3	ND	0.6	0.0	0.9	ND	0.6	ND	1.0	ND
4	1.2	ND	0.9	ND	1.6	0.7	1.4	ND	0.5	ND	1.9	0.6	1.0	0.5	1.7	ND	1.9	0.6	1.4	ND	1.8	ND	0.8	ND
Average	0.9	ND	1.2	ND	1.6	0.8	1.4	ND	1.0	ND	1.8	0.2	1.7	0.3	1.4	ND	1.4	0.1	1.3	0.0	1.0	ND	1.4	0.1
											SILVER (u	g/I \ 2000)											
		JAN		FEB		MAR		APR		MAY	SILVEN (C	JUN		JUL		AUG		SEP		ОСТ		NOV	T	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	2.5	ND			0.9	ND	1.0	ND	1.1	ND	1.6	ND	1.6	ND			3.3	ND	1.0	ND	1.1	ND
2	ND	ND	1.7	ND	0.6	ND	2.6	<0.4	1.8	ND	1.1	ND	1.4	ND	1.0	ND	1.0	<0.4	ND	ND	1.2	ND	ND	ND
3	0.8	ND	1.7	ND	1.2	<0.4	3.5	ND	1.9	1.4	1.2	ND	2.2	ND	ND	ND	1.4	<0.4	ND	ND	0.6	ND	1.0	ND
4	1.6	ND	0.8	ND	1.6	ND	0.5	ND	1.7	ND	1.2	ND	1.1	ND	0.8	ND	1.5	0.9	1.0	ND	0.6	ND	1.5	ND
Average	0.6	ND	1.7	ND	1.1	0.0	1.9	ND	1.6	0.4	1.2	ND	1.6	ND	0.9	ND	1.3	0.3	1.1	ND	0.9	ND	0.9	ND
											SILVER (L	g/I \ 2010	1											
		JAN		FEB		MAR		APR		MAY	SILVEN (C	JUN	,	JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	1.0	ND	1.1	ND	1.3	0.6	N	ND	0.7	ND	1.6	ND	0.8	ND	1.9	ND	0.6	ND	2.0	ND	0.7	ND		
2	1.4	ND	1.0	ND	1.5	0.6	0.9	ND	1.1	ND	1.1	ND	0.5	ND	1.1	ND	ND	ND	1.3	ND	0.9	ND	0.9	ND
3	0.8	ND	1.0	ND	1.3	ND	1.1	ND	0.7	ND	0.7	ND	ND	ND	0.9	ND	ND	ND	1.4	ND	1.7	ND	2.0	ND
4	ND	ND			1.2	ND	1.3	ND	ND	ND			ND	ND	0.7	ND	0.7	ND	1.4	ND	1.1	ND	ND	ND
Average	0.8	ND	1.0	ND	1.3	0.3	0.8	ND	0.6	ND	1.1	ND	0.3	ND	1.2	ND	0.3	ND	1.5	ND	1.1	ND	1.0	ND

											ZINC (ug	g/L) 2005												
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff										
1 2	06	25	124	29	97 103	28	144	46	120	21	121	48	116	16	149	25	138	24	188	14	254	21	148	31
3	96 97	25 20	136 196	22 18	103 130	25 22	142 144	26 28	139 118	21 19	128 127	66 58	131 68	18 24	132 146	19 18	171 131	22 17	138 74	16 22	254 129	21 29	149 121	21 19
4	116	25	90	27	117	24	134	24	142	26	122	28	128	25	71	16	145	20	150	23	120	19	118	19
Average	103	23	137	24	112	25	141	31	133	22	125	50	111	21	125	20	146	21	138	19	168	23	134	23
											ZINC (ug	g/L) 2006												
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff										
1	182	23	17	20	149	26	159	28	256	21	143	26	180	31	151	26	170	23	163	15	181	16	160	18
2 3	145 129	23 24	117 122	24 24	201 124	56 34	371 182	31 31	173 155	22 27	169 159	26 25	352 149	26 27	164 158	29 27	158 158	20 18	178 82	36 13	136 124	10 9	125 126	18 16
4	128	21	122	26	124	34	327	64	149	26	173	36	93	26	166	25	130	10	168	20	135	9	121	17
Average	146	23	121	24	158	39	260	39	183	24	161	28	194	28	160	27	162	20	148	21	144	11	133	17
711-080	2.0				230	33	200	33	103		101	20	25.	20	200		102		2.0				233	
											ZIN	C (ug/L)	2007											
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff										
1	163	18	87	21	149	22	176	18	140	13	183	17	166	17	149	22	152	27	180	24	144	16	400	40
2	153	17	82	21	137	18	167	25	153	13	178	16	195	40	172	20	150	25	166	26	159	16	129	19
3	149 159	19 29	91	22	146 159	17 17	164 164	19 22	170 154	15 12	154	14	191 146	21 22	178 168	24 23	159 187	19 17	130 134	17 18	113 170	20 25	127 126	17 16
Average	156	21	87	21	148	19	168	21	154	13	172	16	175	25	167	22	162	22	153	21	147	19	127	17
Average	130		07		140	17	100		134	13	1/2	10	1/3	23	107		102		133		147	1,7	127	/
											ZIN	C (ug/L)	2008											
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff										
1 2	108	19 26	111	25	147	25	122	25	162	21	123	24	155	21	160	25	167	23	185	19	126	20	166	29
3	138 133	26 18	267 123	28 20	133 143	23 22	141 151	24 27	162 159	31 34	152 159	29 31	141 151	23 20	157 167	22 23	140 125	24 27	146 147	21 21	136 134	26 22	137 122	28 32
4	122	18	87	21	135	26	135	23	131	32	200	31	148	53	162	22	150	22	140	27	159	25	115	26
Average	125	20	147	24	140	24	137	25	151	32	159	29	149	29	162	23	146	24	155	22	143	24	135	29
· ·																								
											ZIN	C (ug/L)	2009											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff										
1	116	32	177	39	126	27	151	25	160	24	162	25	158	21	177	31	142	22	403	19	152	17 23	156	20
2 3	133 144	29 47	134 152	31 28	126 137	27 28	161 151	23 21	155 176	21 21	143 148	18 24	150 173	21 21	171 67	25 19	139	22 19	146 153	22 28	73 95	20	61 137	26 20
4	164	26	141	34	148	24	141	20	171	20	152	12	151	21	142	26	146	19	143	22	159	17	150	23
Average	139	34	151	33	137	26	151	22	166	22	151	20	158	21	139	25	142	20	211	23	120	19	126	22
0 -																								
											ZIN	C (ug/L)	2010											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff										
1 2	155 179	27 21	154 136	28 26	133 145	26 25	144 166	27 27	229 203	23 24	220 151	34 21	136 106	29 20	134 157	25 30	134 157	25 30	181 205	26 26	211 156	30 32	156	26
3		28	123	26	178	23	160	27	170	36	135	18	115	20	139	24	139	24	133	29	142	28	155	20
																							100	~~
4	103 142	33	123	2-7	162	24		22					94			21			159	23	140	22	91	34
			138	26			157 157		137 185	26 27	169	24		23	155 146	21 25	155 146	21 25					91 134	34 27

											AMMON	NIA (mg/L)	2005											
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1 2	21.6	21.3	28 28.5	27.7 27.7	17.4 24.6	17.4 24.4	27.7 27.9	28 27.4	28.6	20.2	28 30.3	28.3 29.4	28.3 28.8	27.7 28.3	29.1 29.4	28.8 28.6	28.6 29.4	28.3 29.1	29.1 29.7	28.6 30	20.6	20.2	31.4 29.7	30.5 29.4
3	25.2	24.6	26.6	27.7	24.6	26.6	27.9	28.6	28.6	28.3 27.4	30.8	30.2	28.6	28.3	29.4	27.4	27.4	29.1	27.7	27.4	28.6 30.2	28.3 30	29.7	29.4
4	27.1	26.6	21.6	21.3	26.9	26.6	27.1	26.9	28.3	28	29.7	29.4	29.4	29.1	27.4	27.7	29.3	28.8	NA	NA	27.7	27.7	29.7	26.3
Average	24.6	24.2	26.2	26	24.2	23.8	28	27.7	28.5	27.9	29.7	29.3	28.8	28.4	28.3	28.1	28.7	28.6	28.8	28.7	28.8	28.7	30.1	28.9
· ·																								
											AMMON	NIA (mg/L)	2006					c=n						556
Week	Inf	JAN Eff	Inf	FEB Eff	Inf	MAR Eff	Inf	APR Eff	Inf	MAY Eff	Inf	JUN Eff	Inf	JUL Eff	Inf	AUG Eff	Inf	SEP Eff	Inf	OCT Eff	Inf	NOV Eff	Inf	DEC Eff
1	26.9	29.4	33.2	31.9	31.3	29.4	30.1	30.2	34.3	29.1	28.6	28.3	31.3	30.8	31.6	30.2	31.9	31.4	31.9	32.8	31.9	30.2	34.9	33.9
2	29.7	28.3	39.2	36.7	33	32.5	29.1	28.8	31.4	30.8	30.5	29.4	31.0	30.5	32.5	30.5	30.2	30.2	31.4	30.8	31.6	31.4	33.9	33.3
3	30.5	29.7	31.1	30.8	32.5	31.5	31.1	30.8	31.4	31.1	31.1	30.5	30.5	30.2	29.4	30	30	29.7	31.1	30.8	30.8	30.8	32.7	32.2
4	31	30.5	30	29.7			32.3	31.9	30.8	30.2	30.0	29.1	29.6	28.8	NA	NA			NA	NA	31.6	31.1	31.4	31.1
Average	29.5	29.5	33.4	32.3	32.3	31.1	30.7	30.4	32.0	30.3	30.1	29.3	30.6	30.1	31.2	30.2	30.7	30.4	31.5	31.5	31.5	30.9	33.2	32.6
												/ //												
		JAN		FEB		MAR		APR		MAY	AMMON	NIA (mg/L) JUN) 2007	JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	31.9	31.6	33.3	33.0	29.7	30.0	33.6	33.3	32.7	31.4	32.9	32.5	30.8	30.5	31.4	30.5	29.4	29.7	32.5	31.6	32.8	31.9	2	
2	31.1	31.1	31.6	31.4	30.4	30.5	NA	NA	32.2	31.6	33.6	33.3	32.8	31.9	33.3	31.6	31.9	31.4	31.4	30.8	34.4	32.8	8.3	27.4
3	31.4	32.2	29.4	28.6	32.4	31.1	33.5	32.8	30.8	30.8	32.2	31.6	34.4	33.3	31.1	29.7	33.6	32.8	34.4	33.3	29.4	29.4	30.7	29.4
4	29.4	29.7			32.5	32.5	33.3	32.8	NA	NA			32.9	33.0	30.9	30.0	32.4	31.6	32.5	31.1	28.3	28.3	28.8	28.6
							31.9	31.9																
Average	31.0	31.2	31.4	31.0	31.3	31.0	33.1	32.7	31.9	31.3	32.9	32.5	32.7	32.2	31.7	30.5	31.8	31.4	32.7	31.7	31.2	30.6	22.6	28.5
											AMMON	NIA (mg/L)	2008											
		JAN		FEB		MAR		APR		MAY		JUN	,	JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	31.1	30.8	40.5	29.7	30.7	30.8	32.2	31.9			31.3	31.7	32.9	33.0	30.8	32.2	31.9	31.6	31.6	30.0			32.5	31.1
2	27.1	27.4	31.4	30.8	30.5	30.8	33.0	31.6	32.8	31.4	31.9	31.1	31.9	31.4	30.8	32.2	31.6	31.1	32.8	30.5	30.8	30.0	32.4	31.4
3	31.9	31.6	30.0	29.4	30.9	30.8	31.6	33.6	33.9	32.2	31.3	30.7	32.5	32.2	31.6	31.4	31.6	30.8	32.7	30.8	31.1	29.4	25.5	24.6
4	30.2	29.4	29.4	27.4	32.0	32.2	34.7	34.2	30.6	31.3	31.6	31.1	32.1	31.1	32.9	33.6	31.3	30.0	30.8	31.6	31.9	30.8	28.6	28.3
Average	30.1	29.8	32.8	29.3	31.0	31.2	32.9	32.8	32.4	31.6	31.5	31.2	32.4	31.9	31.5	32.4	31.6	30.9	32.0	30.7	31.3	30.1	29.8	28.9
											AMMON	NIA (mg/L)	2009											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	29.7	28.8	31.3	30.0			34.9	33.6	31.0	29.7	34.3	33.6	34.6	33.6	33.6	31.6			34.9	34.2	35.2	33.9	32.9	32.5
2	29.7	29.2	28.3	27.4	31.4	30.2	34.2	33.9	34.4	33.3	33.6	31.9	33.6	31.4	32.8	31.9	30.1	29.1	33.0	31.9	34.4	32.8	26.3	26.0
3 4	28.7 30.7	29.1	29.1	28.8	31.9	31.1	33.3	32.8	33.9	32.8	34.4	33.6	32.5	31.9	30.8	30.2	32.2	31.4	31.6	31.1	36.7	36.4	30.0	29.7
Average	29.7	29.9	30.1 29.7	29.7	31.4	30.2 30.5	32.8	32.5	34.2 33.4	32.8	34.4	33.0 33.0	33.9 33.7	33.0 32.5	31.1	30.2	33.0 31.8	31.9	33.6 33.3	31.6 32.2	37.0 35.8	35.3 34.6	31.6 30.2	31.4 29.9
Average	23.7	25.5	23.7	25.0	31.0	30.3	33.0	33.2	33.4	32.2	34.2	33.0	33.7	32.3	32.1	31.0	31.0	30.0	33.3	32.2	33.6	34.0	30.2	20.0
											AMMON	NIA (mg/L)	2010											
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	33.9	33.6	31.6	32.2	30.2	30.5	31.1	30.2	33.9	34.7	32.7	32.2	34.6	33.3	33.2	33.3	34.2	31.4	32.3	30.5	31.5	32.2	22.0	22.0
2	32.9	33.9	28.8	29.1	30.8	30.8	28.6	28.0	32.8	32.2	33.3	33.3	34.4	32.5	31.6	31.9	33.9	33.0	33.3	33.3	31.6	31.6	33.0	32.8
3	21.6 29.1	21.7 29.1	30.8	30.2	32.8 32.5	32.5 32.8	31.4 32.5	31.1 31.4	33.3 32.8	33.6 32.2	32.5	32.8	32.8 32.6	32.5 32.5	31.4 30.8	31.9 30.8	31.6 31.9	30.0 31.1	31.6 32.2	29.4 30.9	28.8 30.2	29.1 31.1	35.6 22.1	32.8 21.8
Average	29.4	29.6	30.4	30.5	31.6	31.7	30.9	30.2	33.2	33.2	32.8	32.8	33.6	32.7	31.8	32.0	32.9	31.4	32.4	31.0	30.5	31.0	30.2	29.1

											CYANI	DE (mg/L)	2004											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	<0.002	0.003	0.003	0.003	<0.002	0.003	0.006	0.002	0.002	0.005	0.005	0.03	0.003
2	0.004 0.002	0.003 0.003	0.003 0.002	0.003 0.002	0.003 0.003	0.003 0.003	0.003 0.003	ND 0.002	0.002 0.003	0.003 <0.002	ND 0.002	ND 0.002	ND	ND	ND 0.003	0.002 0.002	ND 0.007	<0.002 0.007	0.003 0.003	ND 0.003	0.002	0.002 0.003	0.002 0.004	0.003 0.003
4	0.002	0.003	0.002	0.002	0.003	0.003	0.003	0.002	0.003	0.003	ND	<0.002	0.003	0.002	ND	<0.002	0.002	<0.007	0.003	0.003	0.002	0.003	N D	0.003
Avg	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.003	0.002	0.001	0.001	0.002	0.002	0.002	0.001	0.003	0.003	0.003	0.003	0.002	0.003	0.002	0.003
		7.41		EED		MAD		ADD		MAN	CYANI	DE (mg/L)	2005	7111		ALIC		CED		OCT		NOV		DEC
Week	Inf	JAN Eff	Inf	FEB Eff	Inf	MAR Eff	Inf	APR Eff	Inf	MAY Eff	Inf	JUN Eff	Inf	JUL Eff	Inf	AUG Eff	Inf	SEP Eff	Inf	OCT Eff	Inf	NOV Eff	Inf	DEC Eff
1	±1111		0.002	0.002	0.003	0.002	0.003	0.003	±1111		0.003	0.003	0.003	0.002	0.003	0.003	0.003	0.002	0.002	0.002	2111		0.006	0.003
2	0.003	0.002	0.002	0.003	0.003	0.002	0.003	0.003	0.002	0.002	ND	ND	0.002	0.003	ND	0.003	0.002	<0.002	ND	<0.002	0.002	0.002	0.003	0.003
3	0.002	0.002	0.003	0.003	0.002	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.003	0.002	0.003	0.002	0.003	0.003	0.002	0.002	0.002	ND	0.004	0.003
4	0.003	0.003	0.003	0.004	0.004	0.003	0.002	0.003	0.002	0.003	0.002	0.002	0.003	0.003	ND	ND	ND	ND	0.002	<0.002	ND	0.002	0.003	ND
Average	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.002	0.002	0.003	0.003	0.002	0.002	0.002	0.001	0.002	0.001	0.001	0.001	0.004	0.002
											CYANI	DE (mg/L)	2006											
lde -1.	To C	JAN	T C	FEB	T- C	MAR	T C	APR	To C	MAY	T C	JUN	T C	JUL	T C	AUG	To C	SEP	T ~ C	OCT C	Tof	NOV	Tes	DEC
Week	Inf	Eff a aas	Inf 0.002	0.003	Inf 0.002	Eff <0.002	Inf ND	Eff <0.002	Inf 0.002	Eff ND	Inf ND*	Eff ND*	Inf	Eff ND	Inf	Eff ND	Inf	Eff	Inf	0.002	Inf ND	Eff ND	Inf ND	Eff ND
1 2	0.002 0.002	0.002 <0.002	0.002	0.003 <0.002	0.002	0.002	0.003	0.002	0.002	ND <0.002	ND* ND	ND* ND	ND 0.002	ND ND	ND ND	ND ND	ND ND	ND ND	0.002 ND	0.002 ND	ND 0.002	ND 0.002	ND 0.002	0.002
3	0.002	0.002	0.003	0.002	0.003	<0.002	0.002	<0.002	0.002	<0.002	0.002	0.002	0.002	ND	ND	ND	0.003	ND	ND	ND	0.002	0.002	ND	0.002
4	0.002	<0.002	0.003	<0.002			0.002	<0.002	ND	ND	0.003	0.002	0.002	<0.002	ND	ND			ND	ND	ND	ND	0.002	0.002
Average	0.002	0.001	0.003	0.001	0.002	0.001	0.002	0.001	0.002	0.000	0.002	0.001	0.002	0.000	ND	ND	0.001	ND	0.001	0.001	0.001	0.001	0.001	0.002
HI-	T - C	JAN Eff	Inf	FEB Eff	T C	MAR Eff	Inf	APR Eff	T C	MAY Eff		DE (mg/L) JUN Eff		JUL Eff	T = C	AUG Eff	T C	SEP Eff	T = C	OCT Eff	T - C	NOV Eff	T - C	DEC Eff
Week 1	Inf ND	ND	0.002	0.003	Inf ND	ND	NA NA	NA NA	Inf ND	ND ND	Inf ND	ND	Inf 0.002	ND	Inf ND	ND ND	Inf 0.002	ND ND	Inf ND	<0.002	Inf ND	<0.002	Inf	ETT
2	0.002	0.002	ND	0.003	0.003	ND	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.002	ND	ND	ND	ND	<0.002	ND	ND
3	ND	<0.002																						ND
4			0.002	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND
	ND	ND	0.002	0.003	ND 0.001	ND ND	0.002	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND 0.003	ND 0.002	ND ND	ND ND	ND ND	ND ND	ND ND	
Avenage		ND			0.001	ND	0.002 ND	ND ND	ND	ND			ND	ND	ND	ND	0.003	0.002	ND	ND	ND	ND	ND	ND ND
Average	ND 0.001		0.002	0.003			0.002	ND			ND	ND	ND 0.001											ND
Average		ND 0.001		0.003	0.001	ND ND	0.002 ND	ND ND ND	ND	ND ND	ND	ND DE (mg/L)	ND 0.001	ND ND	ND	ND ND	0.003	0.002	ND	ND 0.000	ND	ND 0.000	ND	ND ND
Average Week		ND			0.001	ND	0.002 ND	ND ND	ND	ND	ND	ND	ND 0.001	ND	ND ND	ND	0.003	0.002	ND	ND	ND	ND	ND	ND ND
	0.001	ND 0.001 JAN	0.002	0.003 FEB	0.001	ND ND MAR	0.002 ND 0.001	ND ND ND	ND ND	ND ND MAY	ND CYANI	ND DE (mg/L) JUN	ND 0.001 2008	ND ND JUL	ND	ND ND AUG	0.003	0.002 0.001 SEP	ND ND	0.000 OCT	ND ND	ND 0.000	ND ND	ND ND ND
Week	0.001 Inf ND ND	JAN Eff ND ND	0.002 Inf ND ND	0.003 FEB Eff ND ND	0.001 0.002 Inf ND ND	ND ND MAR Eff ND ND	0.002 ND 0.001 Inf ND ND	ND ND APR Eff ND ND	ND ND Inf	ND ND MAY Eff	ND CYANI Inf ND ND	ND DE (mg/L) JUN Eff ND ND	ND 0.001 2008 Inf ND ND	ND ND JUL Eff ND ND	ND ND Inf ND ND	ND ND AUG Eff ND ND	0.003 0.002 Inf ND ND	0.002 0.001 SEP Eff ND <0.002	ND ND Inf ND ND	0.000 OCT Eff <0.002 ND	ND ND Inf	ND 0.000 NOV Eff <0.002	ND ND Inf ND ND	ND ND DEC Eff ND 0.002
Week 1 2 3	0.001 Inf ND ND ND	JAN Eff ND ND ND	0.002 Inf ND ND ND	0.003 FEB Eff ND ND ND	0.001 0.002 Inf ND ND	ND ND MAR Eff ND ND ND	0.002 ND 0.001 Inf ND ND 0.002	ND ND ND APR Eff ND ND ND	ND ND Inf ND ND	ND ND MAY Eff ND ND	ND CYANI Inf ND ND ND ND	ND DE (mg/L) JUN Eff ND ND ND	ND 0.001 2008 Inf ND ND ND	ND ND JUL Eff ND ND ND	ND ND Inf ND ND ND ND	ND ND AUG Eff ND ND ND ND	0.003 0.002 Inf ND ND 0.003	0.002 0.001 SEP Eff ND <0.002 ND	ND ND Inf ND ND ND ND	0.000 OCT Eff <0.002 ND 0.002	ND ND Inf ND ND	ND 0.000 NOV Eff <0.002 0.002	ND ND Inf ND ND ND ND	ND ND ND DEC Eff ND 0.002 <0.00
Week 1 2 3 4	0.001 Inf ND ND ND ND	O.001 JAN Eff ND ND ND ND	0.002 Inf ND ND ND ND	0.003 FEB Eff ND ND ND ND	0.001 0.002 Inf ND ND ND 0.002	ND ND MAR Eff ND ND ND <0.002	0.002 ND 0.001 Inf ND ND 0.002 ND	ND ND ND APR Eff ND ND ND ND ND ND	ND ND Inf ND ND ND ND	ND ND MAY Eff ND ND ND ND	ND CYANI Inf ND ND ND ND ND	ND DE (mg/L) JUN Eff ND ND ND ND ND	ND 0.001 2008 Inf ND ND ND ND ND	ND ND JUL Eff ND ND ND ND ND	ND ND Inf ND ND ND ND ND ND	ND AUG Eff ND ND ND ND ND ND	0.003 0.002 Inf ND ND 0.003 0.002	0.002 0.001 SEP Eff ND <0.002 ND ND	ND ND Inf ND ND ND ND ND ND	0.000 OCT Eff <0.002 ND 0.002 <0.002	ND ND Inf ND ND ND ND	ND 0.000 NOV Eff <0.002 0.002 0.003	ND Inf ND ND ND ND ND 0.002	ND ND ND DEC Eff ND 0.002 <0.003
Week 1 2 3	0.001 Inf ND ND ND	JAN Eff ND ND ND	0.002 Inf ND ND ND	0.003 FEB Eff ND ND ND	0.001 0.002 Inf ND ND	ND ND MAR Eff ND ND ND	0.002 ND 0.001 Inf ND ND 0.002	ND ND ND APR Eff ND ND ND	ND ND Inf ND ND	ND ND MAY Eff ND ND	ND CYANI Inf ND ND ND ND	ND DE (mg/L) JUN Eff ND ND ND	ND 0.001 2008 Inf ND ND ND ND	ND ND JUL Eff ND ND ND	ND ND Inf ND ND ND ND	ND ND AUG Eff ND ND ND ND	0.003 0.002 Inf ND ND 0.003	0.002 0.001 SEP Eff ND <0.002 ND	ND ND Inf ND ND ND ND	0.000 OCT Eff <0.002 ND 0.002	ND ND Inf ND ND	ND 0.000 NOV Eff <0.002 0.002	ND ND Inf ND ND ND ND	ND ND ND DEC Eff ND 0.002 <0.002
Week 1 2 3 4	0.001 Inf ND ND ND ND	O.001 JAN Eff ND ND ND ND	0.002 Inf ND ND ND ND	0.003 FEB Eff ND ND ND ND	0.001 0.002 Inf ND ND ND 0.002	ND ND MAR Eff ND ND ND <0.002	0.002 ND 0.001 Inf ND ND 0.002 ND	ND ND ND APR Eff ND ND ND ND	ND ND Inf ND ND ND ND	ND ND MAY Eff ND ND ND ND	ND CYANI Inf ND ND ND ND ND ND	ND DE (mg/L) JUN Eff ND ND ND ND ND	ND 0.001 2008 Inf ND ND ND ND ND ND	ND ND JUL Eff ND ND ND ND ND	ND ND Inf ND ND ND ND ND ND	ND AUG Eff ND ND ND ND ND ND	0.003 0.002 Inf ND ND 0.003 0.002	0.002 0.001 SEP Eff ND <0.002 ND ND	ND ND Inf ND ND ND ND ND ND	0.000 OCT Eff <0.002 ND 0.002 <0.002	ND ND Inf ND ND ND ND	NOV Eff <0.002 0.002 0.003 0.002	ND Inf ND ND ND ND ND 0.002	ND ND ND DEC Eff ND 0.002 (0.003 0.003
Week 1 2 3 4 Average	O.001 Inf ND ND ND ND ND ND	ND 0.001 JAN Eff ND ND ND ND ND ND ND ND	0.002 Inf ND ND ND ND ND	0.003 FEB Eff ND ND ND ND ND FEB	0.001 0.002 Inf ND ND ND 0.002 0.001	ND ND MAR Eff ND	0.002 ND 0.001 Inf ND ND 0.002 ND	ND ND ND APR Eff ND ND ND ND ND ND ND APR	ND ND Inf ND ND ND ND ND	ND MAY Eff ND ND ND ND ND MAY	ND CYANI Inf ND ND ND ND CYANI	ND DE (mg/L) JUN Eff ND ND ND ND ND ND DE (mg/L) JUN	ND 0.001 2008 Inf ND ND ND ND ND ND 2009	ND ND JUL Eff ND ND ND ND ND JUL JUL	ND Inf ND ND ND ND ND ND ND	ND AUG Eff ND ND ND ND ND AUG	0.003 0.002 Inf ND ND 0.003 0.002 0.001	0.002 0.001 SEP Eff ND <0.002 ND 0.000 SEP	ND ND Inf ND ND ND ND ND ND	0.000 OCT Eff <0.002 ND 0.002 <0.002 0.001 OCT	ND ND Inf ND ND ND ND ND	ND 0.000 NOV Eff <0.002 0.003 0.002 NOV	ND ND Inf ND ND ND ND 0.002 0.001	ND ND ND DEC Eff ND 0.002 <0.003 0.001
Week 1 2 3 4 Average	Inf ND ND ND ND ND ND Inf	ND 0.001 JAN Eff ND ND ND ND ND JAN Eff	0.002 Inf ND ND ND ND ND Inf	0.003 FEB Eff ND ND ND ND ND FEB Eff	0.001 0.002 Inf ND ND ND 0.002	ND MAR Eff ND ND ND ND O.002	0.002 ND 0.001 Inf ND ND 0.002 ND 0.001	ND ND ND APR Eff ND ND ND ND ND APR Eff	ND ND Inf ND ND ND ND ND ND Inf	ND MAY Eff ND ND ND ND ND ND ND MAY Eff	ND CYANI Inf ND ND ND ND ND ND ND TO ND TO	ND IDE (mg/L) JUN Eff ND ND ND ND ND ND ND JUN EDE (mg/L) JUN Eff	ND 0.001 2008 Inf ND ND ND ND ND ND ND ND ND Inf	ND ND JUL Eff ND ND ND ND ND ND JUL Eff	ND Inf ND	ND AUG Eff ND ND ND ND ND ND ND AUG Eff	0.003 0.002 Inf ND ND 0.003 0.002	0.002 0.001 SEP Eff ND <0.002 ND ND 0.000	ND ND Inf ND ND ND ND ND ND ND Inf	0.000 OCT Eff <0.002 ND 0.002 <0.002 0.001 OCT Eff	ND ND Inf ND ND ND ND ND ND Inf	ND 0.000 NOV Eff <0.002 0.003 0.002 NOV Eff	ND ND ND ND ND ND 0.002 0.001	ND ND ND DEC Eff ND 0.002 <0.003 0.001
Week 1 2 3 4 Average	Inf ND	ND 0.001 JAN Eff ND	0.002 Inf ND	0.003 FEB Eff ND ND ND ND ND FEB Eff 0.003	0.001 0.002 Inf ND ND ND 0.002 0.001	ND MAR Eff ND ND ND ND ND MAR Eff MAR Eff	0.002 ND 0.001 Inf ND ND 0.002 ND 0.001 Inf 0.002	ND ND ND APR Eff ND	ND ND Inf ND ND ND ND ND Inf ND	ND MAY Eff ND ND ND ND ND ND ND MAY Eff 0.002	ND CYANI Inf ND ND ND ND ND The cyani Inf ND ND CYANI Inf	ND DE (mg/L) JUN Eff ND ND ND ND ND ND SDE (mg/L) JUN Eff 0.002	ND 0.001 2008 Inf ND 0.009 Inf 0.002	ND ND JUL Eff ND ND ND ND ND JUL Eff 0.003	ND Inf ND	ND AUG Eff ND ND ND ND ND ND ND AUG Eff ND	0.003 0.002 Inf ND ND 0.003 0.002 0.001	0.002 0.001 SEP Eff ND <0.002 ND ND 0.000 SEP Eff	ND ND Inf ND ND ND ND ND ND ND ND ND N	ND 0.000 OCT Eff <0.002 ND 0.002 <0.002 0.001 OCT Eff 0.002	ND ND Inf ND ND ND ND ND Inf ND	ND 0.000 NOV Eff <0.002 0.003 0.002 NOV Eff 0.002	ND ND Inf ND ND ND 0.002 0.001 Inf 0.002	ND ND ND DEC Eff ND 0.002 (0.003 0.001
Week 1 2 3 4 Average Week 1 2	0.001 Inf ND ND ND ND ND ND O O O O O O O O O O O O O	0.001 JAN Eff ND ND ND ND JAN Eff ND ND ND VO VO VO VO VO VO VO VO VO V	0.002 Inf ND	0.003 FEB Eff ND	0.001 0.002 Inf ND ND ND 0.002 0.001	ND ND MAR Eff ND	0.002 ND 0.001 Inf ND ND 0.002 ND 0.001 Inf 0.002 0.002	ND N	ND ND Inf ND ND ND ND ND ND ND ND ND N	ND ND MAY Eff ND ND ND ND MAY Eff 0.002 0.003	ND CYANI Inf ND ND ND ND CYANI Inf ND 0.002	ND DE (mg/L) JUN Eff ND ND ND ND DE (mg/L) JUN Eff 0.002 0.003	ND 0.001 2008 Inf ND	ND ND JUL Eff ND ND ND ND JUL Eff 0.003 ND	ND ND Inf ND ND ND ND ND ND ND ND ND N	ND AUG Eff ND	0.003 0.002 Inf ND ND 0.003 0.002 0.001 Inf	0.002 0.001 SEP Eff ND (0.002 ND ND 0.000 SEP Eff	ND Inf ND	ND 0.000 OCT Eff <0.002 ND 0.002 <0.002 0.001 OCT Eff 0.002 0.002	ND ND Inf ND ND ND ND ND O O O O O O O O O O O O O	ND 0.000 NOV Eff <0.002 0.003 0.002 NOV Eff 0.002 0.003	ND N	ND ND ND DEC Eff ND 0.001 DEC Eff ND 0.001
Week 1 2 3 4 Average	0.001 Inf ND ND ND ND ND ND ND 0.002 0.002	ND 0.001 JAN Eff ND ND ND ND ND ND ND ND JAN Eff ND <0.002 <0.002	0.002 Inf ND	0.003 FEB Eff ND	0.001 0.002 Inf ND ND 0.002 0.001 Inf 0.002 0.002	ND ND MAR Eff ND ND ND (0.002 0.000 MAR Eff 0.003 0.002 0.002	0.002 ND 0.001 Inf ND ND 0.002 ND 0.001 Inf 0.002 0.002 ND	ND ND ND APR Eff ND	ND ND Inf ND ND ND ND ND ND ND ND ND N	MAY Eff ND N	ND CYANI Inf ND ND ND ND ND ND ND OCYANI Inf ND 0.002 ND	ND DE (mg/L) JUN Eff ND ND ND ND ND LDE (mg/L) JUN Eff 0.002 0.003 ND	ND 0.001 2008 Inf ND 0.009 Inf 0.002	ND ND JUL Eff ND ND ND ND ND JUL Eff 0.003	ND ND Inf ND ND ND ND ND ND ND ND CO.002	AUG Eff ND	0.003 0.002 Inf ND ND 0.003 0.002 0.001 Inf 0.002 ND	0.002 0.001 SEP Eff ND (0.002 ND ND 0.000 SEP Eff 0.025 0.002	ND ND Inf ND ND ND ND ND ND ND ND ND N	ND 0.000 OCT Eff <0.002 ND 0.002 <0.002 0.001 OCT Eff 0.002 0.001	ND ND Inf ND ND ND ND ND O O O O O ND ND	ND 0.000 NOV Eff <0.002 0.003 0.002 NOV Eff 0.002 NOV Eff 0.002 NOV NOV Eff	ND N	ND N
Week 1 2 3 4 Average	0.001 Inf ND ND ND ND ND ND O O O O O O O O O O O O O	0.001 JAN Eff ND ND ND ND JAN Eff ND ND ND VO VO VO VO VO VO VO VO VO V	0.002 Inf ND	0.003 FEB Eff ND	0.001 0.002 Inf ND ND ND 0.002 0.001	ND ND MAR Eff ND	0.002 ND 0.001 Inf ND ND 0.002 ND 0.001 Inf 0.002 0.002	ND N	ND ND Inf ND ND ND ND ND ND ND ND ND N	ND ND MAY Eff ND ND ND ND MAY Eff 0.002 0.003	ND CYANI Inf ND ND ND ND CYANI Inf ND 0.002	ND DE (mg/L) JUN Eff ND ND ND ND DE (mg/L) JUN Eff 0.002 0.003	ND 0.001 2008 Inf ND	ND ND ND JUL Eff ND ND ND ND ND JUL Eff 0.003 ND 0.002	ND ND Inf ND ND ND ND ND ND ND ND ND N	ND AUG Eff ND	0.003 0.002 Inf ND ND 0.003 0.002 0.001 Inf	0.002 0.001 SEP Eff ND (0.002 ND ND 0.000 SEP Eff	ND Inf ND	ND 0.000 OCT Eff <0.002 ND 0.002 <0.002 0.001 OCT Eff 0.002 0.002	ND ND Inf ND ND ND ND ND O Inf ND O O O O O O O O O O O O O	ND 0.000 NOV Eff <0.002 0.003 0.002 NOV Eff 0.002 0.003	ND N	ND ND ND DEC Eff ND 0.001 DEC Eff ND 0.001 DEC Eff ND 0.002
Week	0.001 Inf ND ND ND ND ND ND 0.002 0.002 0.002	ND 0.001 JAN Eff ND ND ND ND ND JAN Eff NO 0.002 0.002 0.003	Inf ND	0.003 FEB Eff ND ND ND ND ND Color (100) FEB Eff 0.003 ND (0.002 0.002	0.001 0.002 Inf ND ND ND 0.002 0.001 Inf 0.002 0.002 0.003	ND N	0.002 ND 0.001 Inf ND ND 0.002 ND 1nf 0.002 0.002 ND ND ND	ND N	ND Inf ND ND ND ND ND ND ND ND O O O O O O O O O O O O O	ND N	ND CYANI Inf ND ND ND ND CYANI Inf ND 0.002 0.001	ND DE (mg/L) JUN Eff ND ND ND ND ND TOE (mg/L) JUN Eff 0.002 0.003 ND 0.003	ND 0.001 2008 Inf ND ND ND ND ND ND ND ND 2009 Inf 0.002 ND	ND JUL Eff ND ND ND ND ND ND O O O O O O O O O O O	ND Inf ND	ND AUG Eff ND	0.003 0.002 Inf ND ND 0.003 0.002 0.001 Inf	0.002 0.001 SEP Eff ND <0.002 ND ND 0.000 SEP Eff 0.025 0.002 0.003	ND Inf ND	ND 0.000 OCT Eff <0.002 ND 0.0002 0.001 OCT Eff 0.002 0.002 0.002 0.003	ND Inf ND ND ND ND ND ND ND One One One One One One One On	ND 0.000 NOV Eff <0.002 0.002 0.002 0.002 NOV Eff 0.002 NOV Eff 0.002 0.003 ND 0.002	ND Inf ND ND ND 0.002 0.001 Inf 0.002 0.002 ND 0.002	ND ND ND ND DEC Eff ND 0.002 (0.003 0.001 DEC Eff ND 0.002 0.003
Week	0.001 Inf ND ND ND ND ND ND 0.002 0.002 0.002	ND 0.001 JAN Eff ND ND ND ND ND JAN Eff NO 0.002 0.002 0.003	Inf ND	0.003 FEB Eff ND ND ND ND ND Color (100) FEB Eff 0.003 ND (0.002 0.002	0.001 0.002 Inf ND ND ND 0.002 0.001 Inf 0.002 0.002 0.003	ND N	0.002 ND 0.001 Inf ND ND 0.002 ND 1nf 0.002 0.002 ND ND ND	ND N	ND Inf ND ND ND ND ND ND ND ND O O O O O O O O O O O O O	ND N	ND CYANI Inf ND ND ND ND CYANI Inf ND 0.002 0.001	ND DE (mg/L) JUN Eff ND ND ND ND ND Eff 0.002 0.003 0.002	ND 0.001 2008 Inf ND ND ND ND ND ND ND ND 2009 Inf 0.002 ND	ND JUL Eff ND ND ND ND ND ND O O O O O O O O O O O	ND Inf ND	ND AUG Eff ND	0.003 0.002 Inf ND ND 0.003 0.002 0.001 Inf	0.002 0.001 SEP Eff ND <0.002 ND ND 0.000 SEP Eff 0.025 0.002 0.003	ND Inf ND	ND 0.000 OCT Eff <0.002 ND 0.0002 0.001 OCT Eff 0.002 0.002 0.002 0.003	ND Inf ND ND ND ND ND ND ND One One One One One One One On	ND 0.000 NOV Eff <0.002 0.003 0.002 NOV Eff 0.002 0.003 ND 0.002 NOV 0.002 NOV	ND Inf ND ND ND 0.002 0.001 Inf 0.002 0.002 ND 0.002	ND ND ND DEC Eff ND 0.002 0.003 0.001 DEC Eff ND 0.002 0.002
Week	0.001 Inf ND ND ND ND ND ND Inf 0.002 0.002 0.002 Inf	ND 0.001 JAN Eff ND ND ND ND JAN Eff C0.002 (0.002 0.003 0.001	Inf ND	0.003 FEB Eff ND ND ND ND ND FEB eff 0.003 ND (0.002 0.002 0.001	0.001 0.002 Inf ND ND ND 0.002 0.001 Inf 0.002 0.003 0.002	ND N	0.002 ND 0.001 Inf ND ND 0.002 ND 0.001 Inf 0.002 ND 0.001	ND N	ND Inf ND ND ND ND ND ND ND O Inf ND	ND N	ND CYANI Inf ND ND ND ND CYANI Inf ND 0.002 ND 0.002 0.001 CYANI Inf	ND DE (mg/L) JUN Eff ND ND ND ND ND SDE (mg/L) JUN Eff 0.002 0.003 0.002 DE (mg/L) JUN Eff	ND 0.001 2008 Inf ND ND ND ND ND ND ND 0.001 0.002 ND	ND ND JUL Eff ND ND ND ND ND O O O O O O O O O O O O O	ND	ND ND AUG Eff ND	0.003 0.002 Inf ND ND 0.003 0.002 0.001 Inf 0.002 ND 0.002	0.002 0.001 SEP Eff ND <0.002 ND ND 0.000 SEP Eff 0.025 0.003 0.010 SEP Eff	ND Inf ND	ND 0.000 OCT Eff <0.002 ND 0.002 <0.002 0.001 OCT Eff 0.002 0.002 0.003 0.002 OCT Eff 0.002	ND ND Inf ND ND ND ND ND ND ND ND 1nf ND 0.002 ND 0.002 0.001	ND 0.000 NOV Eff <0.002 0.002 0.003 0.002 NOV Eff 0.002 0.003 ND 0.002 NOV Eff 0.002 0.002	ND Inf ND ND ND 0.002 0.001 Inf 0.002 0.002 ND 0.002	ND N
Week 1 2 3 4 Average Week 1 2 3 4 Average	0.001 Inf ND ND ND ND ND Inf ND 0.002 0.002 0.002 0.002	ND 0.001 JAN Eff ND ND ND ND JAN Eff ND 0.002 0.003 0.001 JAN Eff 0.002	Inf ND ND ND ND ND ND ND Inf ND	0.003 FEB Eff ND ND ND ND ND FEB Eff 0.003 ND <0.002 0.002 0.001 FEB Eff	0.001 0.002 Inf ND ND ND 0.002 0.001 Inf 0.002 0.002 0.003 0.002 Inf ND	ND MAR Eff ND ND ND C0.002 0.000 MAR Eff 0.003 0.003 MAR Eff 0.003	0.002 ND 0.001 Inf ND ND 0.002 ND 0.001 Inf 0.002 ND 0.001	ND N	ND ND Inf ND ND ND ND O Inf ND ND ND O O O O O O O O O O O O O	ND N	ND CYANI Inf ND ND ND ND CYANI Inf ND 0.002 ND 0.002 0.001 CYANI Inf 0.003	ND DE (mg/L) JUN Eff ND ND ND ND ND Eff 0.002 0.003 0.002 DE (mg/L) JUN Eff 0.003	ND 0.001 2008 Inf ND ND ND ND ND ND ND 2009 Inf 0.002 ND	ND ND ND JUL Eff ND ND ND ND JUL Eff 0.003 ND 0.002 ND 0.002 JUL Eff <0.002	ND ND ND ND ND ND ND ND	ND ND AUG Eff ND	0.003 0.002 Inf ND ND 0.003 0.002 0.001 Inf 0.002 ND 0.002 0.001 Inf 0.002	0.002 0.001 SEP Eff ND (0.002 ND ND 0.000 SEP Eff 0.025 0.002 0.003 0.010 SEP Eff	ND Inf ND	ND 0.000 OCT Eff <0.002 ND 0.002 <0.002 0.001 OCT Eff 0.002 0.002 0.003 0.002 OCT Eff 0.002	ND ND Inf ND ND ND ND ND ND ND N	ND 0.000 NOV Eff <0.002 0.003 0.002 NOV Eff 0.002 0.003 ND 0.002 NOV Eff ND NOV Eff	ND Inf ND ND ND ND 0.002 0.001 Inf 0.002 0.002 ND 0.002 0.002 Inf	ND N
Week 1 2 3 4 Average Week 1 2 3 4 Average	0.001 Inf ND ND ND ND ND ND ND Inf ND 0.002 0.002 0.002 Inf ND ND ND	ND 0.001 JAN Eff ND ND ND ND ND JAN Eff C0.002 0.003 0.001 JAN Eff 0.002 0.002 0.002	0.002 Inf ND	0.003 FEB Eff ND ND ND ND ND Eff 0.003 ND FEB Eff 0.002 0.002 0.001 FEB Eff 0.003 0.003	0.001 0.002 Inf ND ND 0.002 0.001 Inf 0.002 0.002 1nf ND ND 0.002	ND MAR Eff ND ND ND ND ND ND O 0.002 0.003 MAR Eff 0.003 0.003 MAR Eff 0.003 0.003	0.002 ND 0.001 Inf ND 0.002 ND 0.002 0.002 ND ND 0.001	ND N	ND ND Inf ND ND ND ND ND ND ND N	ND ND ND MAY Eff ND ND ND ND MAY Eff 0.002 0.003 ND 0.003 0.002 MAY Eff 0.002 0.002	ND CYANI Inf ND ND ND CYANI Inf ND 0.002 0.001 CYANI Inf 0.003 0.002	ND DE (mg/L) JUN Eff ND ND ND ND DE (mg/L) JUN Eff 0.002 0.003 0.002 DE (mg/L) JUN Eff 0.003 0.002	ND 0.001 2008 Inf ND ND ND ND ND ND 2009 Inf 0.002 ND ND ND ND 2010 Inf ND 0.001	ND ND ND JUL Eff ND ND ND ND ND O JUL Eff 0.003 ND 0.002 ND JUL Eff <0.002 O O O O O O O O O O O O O	ND ND ND ND ND ND ND ND	ND AUG Eff ND ND ND ND ND ND AUG Eff ND ND AUG Eff 0.002 0.002	0.003 0.002 Inf ND ND 0.003 0.002 0.001 Inf 0.002 ND 0.002 0.001 Inf 0.002 0.002	0.002 0.001 SEP Eff ND 0.000 0.000 SEP Eff 0.025 0.002 0.003 0.010 SEP Eff ND 0.003	ND	ND 0.000 OCT Eff <0.002 ND 0.002 0.001 OCT Eff 0.002 0.003 0.002 OCT Eff 0.002 0.003 0.002	ND	ND 0.000 NOV Eff <0.002 0.002 0.002 0.002 NOV Eff 0.002 0.002 NOV Eff 0.002 0.002 NOV Eff 0.002 0.002	ND ND ND ND ND ND ND ND	ND N
Week 1 2 3 4 Average Week 1 2 3 4 Average	0.001 Inf ND ND ND ND Inf ND 0.002 0.002 0.002 Inf ND ND ND ND ND ND ND ND ND	ND 0.001 JAN Eff ND ND ND ND ND JAN Eff 0.002 0.003 0.001 JAN Eff 0.002 0.002 ND	Inf ND ND ND ND ND ND ND Inf ND	0.003 FEB Eff ND ND ND ND ND FEB Eff 0.003 ND <0.002 0.002 0.001 FEB Eff	0.001 0.002 Inf ND ND 0.002 0.001 Inf 0.002 0.003 0.002 Inf ND 0.002 0.002	MAR Eff ND	0.002 ND 0.001 Inf ND ND 0.002 ND 0.001 Inf 0.002 ND ND 0.001	ND N	ND ND Inf ND ND ND ND ND Inf ND ND Inf ND ND ND O O O O O O O O O O O O O	MAY Eff 0.002 0.002 0.002 0.002 0.002	ND CYANI Inf ND ND ND ND CYANI Inf ND 0.002 ND 0.002 0.001 CYANI Inf 0.003	ND DE (mg/L) JUN Eff ND ND ND ND ND Eff 0.002 0.003 0.002 DE (mg/L) JUN Eff 0.003	ND 0.001 2008 Inf ND ND ND ND ND ND ND 2009 Inf 0.002 ND	ND ND JUL Eff ND ND ND ND ND O JUL Eff 0.002 ND 0.002 JUL Eff <0.002 ND ND ND ND ND ND ND ND ND N	ND ND Inf ND ND ND ND ND ND ND N	ND AUG Eff ND ND ND ND ND ND ND AUG Eff AUG Eff O.003 O.002 O.001 AUG Eff O.002 O.002 O.003	0.003 0.002 Inf ND ND 0.003 0.002 0.001 Inf 0.002 ND 0.002 0.001	0.002 0.001 SEP Eff ND <0.002 ND ND 0.000 SEP Eff 0.025 0.002 0.003 0.010 SEP Eff ND 0.003 <0.003	ND	ND 0.000 OCT Eff <0.002 ND 0.002 0.001 OCT Eff 0.002 0.002 0.003 0.002 OCT Eff 0.002 ND ND OCT Eff NO ND	ND ND Inf ND ND ND ND ND ND ND N	ND 0.000 NOV Eff <0.002 0.003 0.002 NOV Eff 0.002 0.003 ND 0.002 NOV Eff ND	ND ND ND ND ND ND ND ND	ND N
Week 1 2 3 4 Average Week 1 2 3 4 Average	0.001 Inf ND ND ND ND ND ND ND Inf ND 0.002 0.002 0.002 Inf ND ND ND	ND 0.001 JAN Eff ND ND ND ND ND JAN Eff C0.002 0.003 0.001 JAN Eff 0.002 0.002 0.002	0.002 Inf ND	0.003 FEB Eff ND ND ND ND ND Eff 0.003 ND FEB Eff 0.002 0.002 0.001 FEB Eff 0.003 0.003	0.001 0.002 Inf ND ND 0.002 0.001 Inf 0.002 0.002 1nf ND ND 0.002	ND MAR Eff ND ND ND ND ND ND O 0.002 0.003 MAR Eff 0.003 0.003 MAR Eff 0.003 0.003	0.002 ND 0.001 Inf ND 0.002 ND 0.002 0.002 ND ND 0.001	ND N	ND ND Inf ND ND ND ND ND ND ND N	ND ND ND MAY Eff ND ND ND ND MAY Eff 0.002 0.003 ND 0.003 0.002 MAY Eff 0.002 0.002	ND CYANI Inf ND ND ND CYANI Inf ND 0.002 0.001 CYANI Inf 0.003 0.002	ND DE (mg/L) JUN Eff ND ND ND ND DE (mg/L) JUN Eff 0.002 0.003 0.002 DE (mg/L) JUN Eff 0.003 0.002	ND 0.001 2008 Inf ND ND ND ND ND ND 2009 Inf 0.002 ND ND ND ND 2010 Inf ND 0.001	ND ND ND JUL Eff ND ND ND ND ND O JUL Eff 0.003 ND 0.002 ND JUL Eff <0.002 O O O O O O O O O O O O O	ND ND ND ND ND ND ND ND	ND AUG Eff ND ND ND ND ND ND AUG Eff ND ND AUG Eff 0.002 0.002	0.003 0.002 Inf ND ND 0.003 0.002 0.001 Inf 0.002 ND 0.002 0.001 Inf 0.002 0.002	0.002 0.001 SEP Eff ND 0.000 0.000 SEP Eff 0.025 0.002 0.003 0.010 SEP Eff ND 0.003	ND	ND 0.000 OCT Eff <0.002 ND 0.002 0.001 OCT Eff 0.002 0.003 0.002 OCT Eff 0.002 0.003 0.002	ND	ND 0.000 NOV Eff <0.002 0.002 0.002 0.002 NOV Eff 0.002 0.002 NOV Eff 0.002 0.002 NOV Eff 0.002 0.002	ND ND ND ND ND ND ND ND	ND N

										E	FFLUENT RA	ADIATION	(pCi/L) 20	105										
		JAN		FEB		MAR		APR		MAY		JUN	XF - 7 7 -	JUL		AUG		SEP		OCT		NOV		DEC
Week	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta								
1			3.2	18.9	2.5	8.8	1.1	16.8			3	19.3	1.3	14.3			2	11.7	1.9	13.1			2.7	18.1
2	1.5	15							2.9	13.9					1.3	20.2					0.7	25.7		
3																								
4				40.0	2 -			46.0		42.0		40.0	4.2	44.5		20.0		46.0		42.4		25.7		40.4
Average	1.5	15	3.2	18.9	2.5	8.8	1.1	16.8	2.9	13.9	3	19.3	1.3	14.3	1.3	20.2	2	16.9	1.9	13.1	0.7	25.7	2.7	18.1
										F	FELLIENT RA	ΔΟΤΔΤΤΟΝ	(pCi/L) 20	106										
		JAN		FEB		MAR		APR		MAY		JUN	(pc1, 1, 10	JUL		AUG		SEP		OCT		NOV		DEC
Week	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta								
1	0.7	12.3	0.7	38.3	2.7	10.5	2.7	10.9			1.0	12.1	1.6	14.6	1.5	13.3	0.7	10.7	0.2	13.4	2.7	17.7	1.9	12.8
2									1.5	16.3														
3																								
4		40.0		20.2		40.5		40.0		44.3		40.4				42.2		40.7		42.4				40.0
Average	0.7	12.3	0.7	38.3	2.7	10.5	2.7	10.9	1.5	16.3	1.0	12.1	1.6	14.6	1.5	13.3	0.7	10.7	0.2	13.4	2.7	17.7	1.9	12.8
										E	FFLUENT RA	ADIATION	(pCi/L) 20	107										
		JAN		FEB		MAR		APR		MAY		JUN	(F - , , , .	JUL		AUG		SEP		OCT		NOV		DEC
Week	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta								
1	0.6	5.5	1.5	23.9	2.3	27.7	2.8	26.3					1.1	28.6			0.8	25.4	0.2	28.0				
2									1.1	29.8	1.5	20.7			1.4	27.5					2.5	24.8	1.1	19.5
3																								
4	0.6	5.5	1.5	23.9	2.3	27.7	2.8	26.3	1.1	29.8	1.5	20.7	1.1	28.6	1.4	27.5	0.8	25.4	0.2	28.0	2.5	24.8	1.1	19.5
Average	0.6	5.5	1.5	23.9	2.3	2/./	2.0	20.3	1.1	29.0	1.5	20.7	1.1	20.0	1.4	27.5	0.0	25.4	0.2	20.0	2.5	24.0	1.1	19.5
										E	FFLUENT RA	ADIATION	(pCi/L) 20	108										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta								
1	1.3	25.3			1.8	21.8	2.3	28.6			1.4	30	0.5	30.3			4.5	28.1	2.7	22.2			6.4	24
2			1.7	22.8					1.3	23.4					6.1	31.3					3.6	30		
3																								
Average	1.3	25.3	1.7	22.8	1.8	21.8	2.3	28.6	1.3	23.4	1.4	30	0.5	30.3	6.1	31.3	4.5	28.1	2.7	22.2	3.6	30	6.4	24
										E	FFLUENT RA	ADIATION	(pCi/L) 20	109										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta								
1	1	27	4.8	29.5			2.8	32.6			2.6	25.9	3.3	30.2	4	34.5			1.3	34.8	0.6	36.1	6.4	37.5
2					5.1	28.7			0.0	32.3							3.7	37						
3																								
Average	1	27	4.8	29.5	5.1	28.7	2.8	32.6	0.0	32.3	2.6	25.9	3.3	30.2	4	34.5	3.7	37	1.3	34.8	0.6	36.1	6.4	37.5
	_														•			-						
										E	FFLUENT RA	ADIATION	(pCi/L) 20	10										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta	alpha	beta								
1	4.9	33.8	9.0	31.5	1.9	32.8	3.2	29.8	2.4	31.8	32.2	32.8	3.3	24.7	3.1	36.5	0.9	32.7	3.2	46.1	3.6	32.7		20.4
2 3																							-1.8	28.1
4																								
Average	4.9	33.8	9.0	31.5	1.9	32.8	3.2	29.8	2.4	31.8	32.2	32.8	3.3	24.7	3.1	36.5	0.9	32.7	3.2	46.1	3.6	32.7	-1.8	28.1
00																								

**************************************											ΔΙ	DRTN AND	DTEL DRTN	(ng/I) 20	25										
			JAN		FEB		MAR		APR			DIVIN AND		(11g/L) 20			AUG		SEP		ОСТ		NOV		DEC
2 MO MO NO	Week	Inf		Inf		Inf		Inf		Inf		Inf		Inf		Inf		Inf		Inf		Inf		Inf	
3	1			ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND
A 10 10 10 10 10 10 10	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
	3				ND				ND				ND		ND		ND								
More Tot STA	4																								
March Marc	Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
New Time Fif											Al	DRIN AND	DIELDRIN	(ng/L) 20	26										
1 NO																									
2 NO																									
3 NO																									
A																									
Average NO NO NO NO NO NO NO N						ND	ND											ND	ND						
ALDEIN AND DIELORIN (ng/L) 2007 ALDEIN AND DIELORIN (ng/L) 2007 ALDEIN AND DIELORIN (ng/L) 2007						ND	ND											ND	ND						
Meek Inf Eff Inf	Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
New No												DRIN AND		(ng/L) 20											
1 NO	Marala.	T C		T C		T C		T C		T C		T - C		T C		T - C		T C		T C		T C		T C	
2 NO				TUT	ETT							Int	ETT											Int	ETT
3				ND	ND							ND	ND											ND	ND
4																									
Average NO																									
Meek Inf	Average	ND						ND	ND	ND	ND				ND				ND				ND	ND	
Meek Inf											Δ1	DDTN AND	DTEI DDTN	(ng/L) 20	30										
Neek			JAN		FEB		MAR		APR			DIVIN AND		(11g/L) 20			AUG		SEP		OCT		NOV		DEC
2 ND	Week	Inf		Inf		Inf		Inf		Inf		Inf		Inf		Inf		Inf		Inf		Inf		Inf	
3	1	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND							
A NO	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
Average ND	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
ALDRIN AND DIELDRIN (ng/L) 2009 No																									
SEP OCT NOV DEC	Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
Week Inf Eff											Al	DRIN AND	DIELDRIN	(ng/L) 20	29										
1 ND																									
2	Week				Eff	Inf	Eff		Eff									Inf	Eff		Eff	Inf			
3												ND	ND												
4 ND ND </td <td></td>																									
Average ND												ND	ND												
ALDRIN AND DIELDRIN (ng/L) 2010 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Week Inf Eff																									
SEP OCT NOV DEC	Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
Week Inf Eff Inf Eff <td></td> <td>DRIN AND</td> <td></td> <td>(ng/L) 20</td> <td></td> <td></td> <td></td> <td></td> <td>c=n</td> <td></td> <td>0.57</td> <td></td> <td></td> <td></td> <td>250</td>												DRIN AND		(ng/L) 20					c=n		0.57				250
1 ND	Mode	Tn£		Tof		Tnf		Tof		To£		Tn£		Tof		To£		Tof		Tof		Tof		To£	
2 ND																								TUT	ETT
3 ND																								ND	ND
4 ND																									
	Average			ND	ND							ND	ND												

											ENDR	IN (ng/L)	2005											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2 3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
/// ugc																								
											ENDR	IN (ng/L)	2006											
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3 4	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Averuge	ND	ND	ND	ND	ND	140	ND	ND	ND	ND	140	ND	ND	ND	ND	ND	140	140	ND	ND	NO	ND	140	ND
											ENDR	IN (ng/L)	2007											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND			ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	93.0	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND
3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Average	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND
Averuge	ND	ND	ND	ND	ND	140	ND	ND	ND	ND	140	ND	ND	ND	ND	ND	140	140	ND	ND	NO	ND	140	ND
											ENDR	IN (ng/L)	2008											
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1 2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
3	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
J																								
											ENDR	IN (ng/L)	2009											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff ND	Inf	Eff ND	Inf	Eff	Inf ND	Eff	Inf	Eff ND	Inf ND	Eff ND	Inf ND	Eff	Inf	Eff	Inf ND	Eff	Inf	Eff ND	Inf	Eff	Inf	Eff
1 2	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
J																								
											ENDR	IN (ng/L)	2010											
Week	Inf	JAN Eff	Inf	FEB Eff	Inf	MAR Eff	Inf	APR Eff	Inf	MAY Eff	Inf	JUN Eff	Tnf	JUL Eff	Inf	AUG Eff	Inf	SEP Eff	Inf	OCT Eff	Inf	NOV Eff	Inf	DEC Eff
week 1	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	Inf ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	TIIT	ETT
2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	ND	ND			ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
-																								

											EXACHLORO	CYCLOHEXA	NES (ng/L)											
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	4.5		ND	ND	15	ND	36	15	22	4-	24	ND	40	41	25	13.5	30	ND	31	ND			ND	10.5
2	13	ND ND	ND	ND	ND 12	ND	43	16	33	17 ND	22	11.5 ND	29.7 27.3	13.5 ND	35	20 72 F	32	ND	30	ND	ND ND	ND ND	ND	ND
3 4	21 28	ND ND	ND ND	30.5 ND	12 ND	ND ND	30.3 39	13.8 ND	25 29.3	16	15 20	13	17.3	20.8	44 0	72.5 23	14 11	ND ND	29 29	ND 20	ND 15	ND ND	ND 28	ND ND
Average	20.7	ND ND	ND ND	7.6	6.8	ND ND	37.1	11.2	29.1	11	20.3	6.1	28.6	18.8	26	32.3	21.8	ND	29.8	5	5	ND	7	2.6
Average	20.7	ND	ND	7.0	0.0	ND	37.1	11.2	29.1	11	20.5	0.1	20.0	10.0	20	32.3	21.0	ND	29.0	5	5	ND	,	2.0
										НСН-Н	EXACHLORO	CYCLOHEXA	NES (ng/L)	2006										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	30	14	ND	ND	12	ND	ND	ND	11.0	ND	30	12.5	24.0	ND	ND	ND	ND	ND	ND	11	ND	ND
2	49	17	ND	ND	ND	ND	ND	ND	ND	ND	15.0	ND	30	ND	14.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	18	ND	ND	ND	ND	ND	ND	ND	ND	ND	14.0	ND	28	ND	22.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	14	ND	17	ND			ND	ND	21	ND	0.0	ND	ND	ND	21.0	ND			ND	ND	ND	ND	ND	ND
Average	20.3	4.3	11.8	3.5	ND	ND	3	ND	5.3	ND	10.0	ND	22	3.1	20.3	ND	ND	ND	ND	ND	ND	2.8	ND	ND
										HCh-n	EXACHI OPO	CACI UHEAV	NES (ng/L)	1 2007										
		JAN		FEB		MAR		APR		MAY	LAACIILONO	JUN	INLS (IIG/L)	JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	16	ND					ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		
2	17	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	426.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	15	ND	ND	ND	ND	ND	12.0	ND	ND	ND	ND	ND	ND	14.0	ND	ND	ND	ND	ND	ND	ND	ND	7.0	ND
4	0	ND	ND	ND	ND	ND	7.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	12.0	ND	ND	ND	ND	ND	4.8	ND	2.5	ND	ND	ND	ND	3.5	ND	ND	ND	ND	ND	ND	ND	ND	2.3	ND
										11611 11	EVACUI OBO	CVCI OUEVA	NEC ((1)	2000										
		JAN		FEB		MAR		APR		MAY	EXACHLURU	JUN	NES (ng/L)) 2008 JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	ND	ND	ND	ND	ND	ND	2111		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2111		ND	ND
2	ND	ND	ND	10.5	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	ND	ND	ND	ND	ND	ND	6.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	2.6	ND	ND	1.6	ND	2.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
											EXACHLORO(NES (ng/L)											
Usali	T C	JAN	T - C	FEB	T C	MAR	T - C	APR	T C	MAY	T C	JUN	T C	JUL	T C	AUG	T C	SEP	T C	OCT	T C	NOV	T C	DEC
Week	Inf ND	Eff	Inf ND	Eff	Inf	Eff	Inf 5	Eff ND	Inf ND	Eff ND	Inf ND	Eff ND	Inf ND	Eff ND	Inf	Eff ND	Inf	Eff	Inf ND	Eff	Inf ND	Eff ND	Inf ND	Eff
1 2	ND ND	ND ND	ND ND	ND ND	ND	ND	0	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND 5.5	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0	ND ND	ND	ND ND			ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND
4	ND	ND	ND	ND	ND	ND	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	1.3	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND
J																								
											EXACHLORO(NES (ng/L)											
Un als	T C	JAN	T C	FEB	T C	MAR	T - C	APR	T - C	MAY	T C	JUN	T C	JUL	T C	AUG	T C	SEP	T - C	OCT	T C	NOV	T - C	DEC
Week 1	Inf ND	Eff ND	Inf ND	Eff ND	Inf ND	Eff ND	Inf ND	Eff ND	Inf ND	Eff ND	Inf ND	Eff ND	Inf ND	Eff ND	Inf ND	Eff ND	Inf ND	Eff ND	Inf ND	Eff ND	Inf ND	Eff ND	Inf	Eff
2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 29	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 85	ND	ND
3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	6 6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND
4	ND	ND	.10		ND	ND	ND	ND	ND	ND		.10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	7.3	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	21.3	ND	ND

											NE & RELA		OUNDS (ng/l											
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1			ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND
2	ND	ND ND	ND ND	ND	ND ND	ND	63 ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND 170	ND ND
3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	178 ND	ND ND									
Average	ND	ND	ND	ND ND	ND ND	ND	15.8	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	44.5	ND
Average	ND	ND	ND	ND	ND	ND	13.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	44.5	ND
										CHLORDA	NE & RELA	TED COMPO	OUNDS (ng/l	L) 2006										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
4	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
										CHLORD/	NE & RELA	TED COMPO	UNDS (ng/l	L) 2007										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	ND	ND			ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	58.0	ND	ND	ND		
2	ND	ND	ND	120.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	14.5	ND	ND	ND	ND	ND									
										CHI ORDA	NF & RFIA	TED COMPO	OUNDS (ng/l	L) 2008										
		JAN		FEB		MAR		APR		MAY	WE OF REEN	JUN	ONDS (11g/ I	JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND							
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
3	ND	ND	15.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
Average	ND	ND	3.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
										CHI UBDA	ME & DELA	TED COMPC	OUNDS (ng/l	1 \ 2000										
		JAN		FEB		MAR		APR		MAY	INE & RELA	JUN	לעאוטה (ווק) נ	JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	ND	ND	ND	ND	2		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2		ND	ND	ND	ND	ND	ND
2	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
3	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
										e e		TER CO!												
		JAN		FEB		MAR		APR		CHLORDA MAY	INE & RELA	TED COMPO	OUNDS (ng/I	L) 2010 JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	ND	20.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14.0	14.5	ND	ND									
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	50.4	ND	ND	ND	ND	ND									
4	ND	ND			ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	6.7	ND	ND	ND	ND	ND	ND	ND ND	12.6	ND	3.5	3.6	ND	ND


										PCBs-P0	LYCHLORIN	ATED BIPH	ENYLS (ng/	L) 2005										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1			ND	ND	ND	ND	ND				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
		JAN		FEB		MAR		APR		PCBs-PO MAY	LYCHLORIN	ATED BIPH JUN	ENYLS (ng/	'L) 2006 JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
4	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
											LYCHLORIN		ENYLS (ng/							0.57				250
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1 2	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND								
3	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND						
4	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND						
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
										PCBs-P0	LYCHLORIN	ATED BIPH	ENYLS (ng/	L) 2008										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND							
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
4	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
										PCBs-P0	LYCHLORIN	ATED BIPH	ENYLS (ng/	L) 2009										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND
2	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
3	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
										PCBs-P0	LYCHLORIN	ATED BIPH	ENYLS (ng/	L) 2010										
		JAN		FEB		MAR		APR		MAY		JUN	- (8/	JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff								
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									
4	ND	ND			ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND									

										DI	OT AND DER	IVATIVES	(ng/L) 20	2 5										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1			ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND
2	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
3 4	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	23 ND	ND ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.8	ND
/ C. ugc																							3.0	
											OT AND DER		(ng/L) 20											
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1 2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	27.0 26	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
· ·																								
											OT AND DER		(ng/L) 20											
HI-	T C	JAN Eff	T - C	FEB	T C	MAR Eff	T - C	APR Eff	T C	MAY	T C	JUN	T C	JUL Eff	T - C	AUG Eff	Inf	SEP Eff	T - C	OCT Eff	T C	NOV	T - C	DEC
Week	Inf ND	ND ND	Inf	Eff	Inf		Inf		Inf	Eff	Inf	Eff	Inf 15.0		Inf ND				Inf		Inf	Eff	Inf	Eff
1 2	ND ND	ND ND	ND	ND	ND ND	ND ND	8.0 16.0	ND ND	24.0 14.0	8.0 ND	17.0	ND	230.0	ND ND	ND ND	ND ND	18.0 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
3	ND	ND	ND	ND	ND	ND	0.0	ND	15.0	ND	8.0	ND	ND	ND	ND	ND	11.0	ND	ND	ND	ND	ND	ND	ND
4	ND	ND	ND	ND	ND	ND	22.0	4	16.0	ND	12.0	ND	ND	ND	ND	ND	16.0	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	11.5	1	17.3	2.0	12.3	ND	5.0	ND	ND	ND	11.3	ND	ND	ND	ND	ND	ND	ND
		JAN		FEB		MAR		APR		MAY DI	OT AND DER	JUN	(ng/L) 20	08 JUL		AUG		SEP		ОСТ		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	13	ND	ND	ND	ND	ND	2		22.0	ND	ND	ND	5.0	4.0	15.0	ND	ND	ND	2		ND	4.5
2	ND	ND	ND	ND	ND	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	22	ND	ND	ND	ND	ND	7.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	13.0	ND	ND	ND	ND	ND
4	ND	ND	ND	ND	ND	ND	ND	ND	8.0	ND	ND	ND	11.0	ND	37.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	8.8	ND	ND	1.5	ND	ND	5	ND	5.5	ND	2.8	ND	10.5	1	3.8	ND	3.3	ND	ND	ND	ND	1.1
										DI	T AND DER	TVATTVES	(ng/L) 20	20										
		JAN		FEB		MAR		APR		MAY	DI AND DEN	JUN	(11g/L) 20	JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	27	5			6.0	ND	19.0	ND	ND	ND	ND	ND	ND	ND			5.0	ND	ND	ND	ND	4.5
2	ND	ND	ND	ND	ND	ND	ND	ND	28.0	ND			ND	ND	ND	ND	ND	ND	5.0	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	8.6	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	ND	ND	26	ND	ND	ND	18.0	ND	0.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	13.3	1.3	ND	ND	6.0	ND	13.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND	ND	ND	1.1
										DI	OT AND DER	TVATTVES	(ng/L) 20	10										
		JAN		FEB		MAR		APR		MAY	OI AND DEN	JUN	(116/11) 20	JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	0	ND	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	22.0	ND	ND	ND	ND	ND		
2	ND	ND	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	ND	ND	4.7	ND	ND 1 2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	1.7	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.5	ND	ND	ND	ND	ND	ND	ND

											TOXAPH	ENE (ng/L	.) 2005											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff																						
1			ND	ND	ND	ND	ND	ND			ND	ND			ND	ND								
2	ND	ND																						
3	ND ND	ND ND																						
	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND
Average	ND	ND																						
											TOXAPH	ENE (ng/L	.) 2006											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff																						
1	ND	ND																						
2	ND	ND																						
3	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND								
Average	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND
Average	ND	ND																						
											TOXAPH	ENE (ng/L	.) 2007											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff																						
1	ND	ND			ND	ND	ND	ND	ND	ND			ND	ND										
2	ND	ND																						
3	ND	ND																						
Average	ND ND	ND ND																						
Average	ND	ND																						
											TOXAPH	ENE (ng/L	.) 2008											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff																						
1	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND			ND	ND								
2	ND	ND																						
3	ND ND	ND ND																						
Average	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND
Average	ND	ND																						
											TOXAPH	ENE (ng/L	.) 2009											
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff																						
1	ND	ND	ND	ND			ND	ND			ND	ND	ND	ND	ND	ND								
2	ND	ND			ND	ND																		
3	ND ND	ND ND	ND	ND	ND ND	ND ND																		
Average	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND.	ND	ND	ND.	ND	NO	NU	ND	NO	NU	ND								
											TOXAPH	ENE (ng/L	.) 2010											
Week	Inf	JAN Eff	Inf	FEB Eff	Inf	MAR Eff	Inf	APR Eff	Inf	MAY Eff	Inf	JUN Eff	Inf	JUL Eff	Inf	AUG Eff	Inf	SEP Eff	Inf	OCT Eff	Inf	NOV Eff	Inf	DEC Eff
week 1	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	TILL	EIT
2	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND								
3	ND	ND																						
4	ND	ND			ND	ND	ND	ND	ND	ND			ND	ND										
Average	ND	ND																						

											ATED PHENO		OUNDS (ug/											
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1			ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND
2	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	1.9	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND
3 4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Average	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	0.5	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
										CHLORINA	ATED PHENO	OLIC COMPO	OUNDS (ug/	L) 2006										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
										CHLORINA	ATED PHENO	OLIC COMPO	OUNDS (ug/	L) 2007										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff	Inf	Eff
1	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Average	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
										CHLORINA	ATED PHENO	OLIC COMPO	OUNDS (ug/	L) 2008										
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	JAN Eff	Inf	FEB Eff	Inf	MAR Eff	Inf	APR Eff	Inf		Inf		Inf		Inf	AUG Eff	Inf	SEP Eff	Inf	OCT Eff	Inf	NOV Eff	Inf	DEC Eff
Week 1	Inf ND		Inf ND		Inf ND		Inf ND		Inf	MAY		JUN		JUL	Inf ND		Inf ND		Inf ND		Inf		Inf ND	
1 2	ND ND	Eff ND ND	ND ND	Eff ND ND	ND ND	Eff ND ND	ND ND	Eff ND ND	ND	MAY Eff ND	Inf ND ND	JUN Eff ND ND	Inf ND ND	JUL Eff ND ND	ND ND	Eff ND ND	ND ND	Eff ND ND	ND ND	Eff ND ND	ND	Eff ND	ND ND	Eff ND ND
1 2 3	ND ND ND	Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND	MAY Eff ND ND	Inf ND ND ND	JUN Eff ND ND ND	Inf ND ND ND	JUL Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND	Eff ND ND	ND ND ND	Eff ND ND ND
1 2 3 4	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND	MAY Eff ND ND ND	Inf ND ND ND	JUN Eff ND ND ND ND	Inf ND ND ND	JUL Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND	Eff ND ND ND	ND ND ND ND	Eff ND ND ND ND
1 2 3	ND ND ND	Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND	MAY Eff ND ND	Inf ND ND ND	JUN Eff ND ND ND	Inf ND ND ND	JUL Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND ND	Eff ND ND ND	ND ND	Eff ND ND	ND ND ND	Eff ND ND ND
1 2 3 4	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND	MAY Eff ND ND ND ND	Inf ND ND ND ND	JUN Eff ND ND ND ND ND ND	Inf ND ND ND ND ND ND	JUL Eff ND ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND	Eff ND ND ND	ND ND ND ND	Eff ND ND ND ND
1 2 3 4	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND	MAY Eff ND ND ND ND	Inf ND ND ND	JUN Eff ND ND ND ND ND ND	Inf ND ND ND ND ND ND	JUL Eff ND ND ND ND ND	ND ND ND ND	Eff ND ND ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND ND ND	ND ND ND	Eff ND ND ND	ND ND ND ND	EFF ND ND ND ND ND
1 2 3 4	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND	MAY Eff ND ND ND ND CHLORINA	Inf ND ND ND ND	JUN Eff ND ND ND ND ND ODLIC COMPO	Inf ND ND ND ND ND ND	JUL Eff ND ND ND ND ND ND L) 2009	ND ND ND ND	Eff ND ND ND ND	ND ND ND ND	Eff ND ND ND ND ND	ND ND ND ND	Eff ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	Eff ND ND ND ND
1 2 3 4 Average	ND ND ND ND	EFF ND ND ND ND ND	ND ND ND ND	EFF ND ND ND ND ND	ND ND ND ND	EFF ND ND ND ND ND	ND ND ND ND	EFF ND ND ND ND ND	ND ND ND ND	MAY Eff ND ND ND ND CHLORINA	Inf ND ND ND ND ND ND ND	JUN Eff ND ND ND ND OLIC COMPO	Inf ND ND ND ND ND OUNDS (ug/	JUL Eff ND ND ND ND ND ND JUL	ND ND ND ND	Eff ND ND ND ND ND AUG	ND ND ND ND	Eff ND ND ND ND ND	ND ND ND ND	EFF ND ND ND ND ND	ND ND ND ND	ND ND ND NOV	ND ND ND ND ND	Eff ND ND ND ND ND ND DEC
1 2 3 4 Average	ND ND ND ND ND	Eff ND ND ND ND ND	ND ND ND ND ND	Eff ND ND ND ND ND	ND ND ND ND	EFF ND ND ND ND ND	ND ND ND ND	Eff ND ND ND ND ND APR Eff	ND ND ND ND	MAY Eff ND ND ND ND CHLORINA MAY Eff	Inf ND ND ND ND ND ND ND ATED PHENO	JUN Eff ND ND ND ND ND DLIC COMPO JUN Eff	Inf ND ND ND ND ND OUNDS (ug/	JUL Eff ND ND ND ND ND VD VD VD JUL Eff	ND ND ND ND	Eff ND ND ND ND ND AUG Eff	ND ND ND ND	Eff ND ND ND ND ND	ND ND ND ND	Eff ND ND ND ND ND OCT Eff	ND ND ND ND	ND ND ND NOV Eff	ND ND ND ND ND	Eff ND ND ND ND ND DEC Eff
1 2 3 4 Average	ND ND ND ND ND	Eff ND ND ND ND ND ND	ND ND ND ND ND	Eff ND	ND ND ND ND ND	Eff ND ND ND ND ND ND MAR Eff	ND ND ND ND ND	Eff ND ND ND ND ND APR Eff ND	ND ND ND ND	MAY Eff ND ND ND ND CHLORINA MAY Eff ND	Inf ND ND ND ND ND ND ND THEN ND THEN ND	JUN Eff ND ND ND ND ND DLIC COMPO JUN Eff ND	Inf ND ND ND ND ND OUNDS (ug/	JUL Eff ND ND ND ND ND ND TL) 2009 JUL Eff ND	ND ND ND ND ND	Eff ND ND ND ND ND AUG Eff ND	ND ND ND ND ND	Eff ND ND ND ND ND SEP Eff	ND ND ND ND	Eff ND ND ND ND ND OCT Eff	ND ND ND ND	ND ND ND NOV Eff	ND ND ND ND ND	Eff ND ND ND ND ND DEC Eff ND
1 2 3 4 Average	ND N	EFF ND ND ND ND ND DAN EFF ND ND	ND N	EFF ND ND ND ND ND ND ND ND ND	ND N	EFF ND ND ND ND ND ND ND ND MAR EFF ND ND ND	ND N	EFF ND ND ND ND ND ND ND ND ND	ND N	MAY Eff ND ND ND ND CHLORIN MAY Eff ND ND	Inf ND	JUN Eff ND ND ND ND ND ND ND ND DLIC COMPO JUN Eff ND ND	Inf ND	JUL Eff ND ND ND ND ND JUL Eff ND	ND N	Eff ND AUG Eff ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	Eff ND	ND N	EFF ND ND ND ND ND OCT EFF ND ND ND ND ND ND ND ND ND	ND	ND ND ND NOV Eff ND	ND N	EFF ND ND ND ND DEC EFF ND ND ND ND ND ND ND ND ND
1 2 3 4 Average	ND N	Eff ND	ND ND ND ND ND ND ND ND ND	EFF ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	Eff ND	ND N	Eff ND	ND ND ND ND ND ND ND ND	MAY Eff ND ND ND CHLORINA MAY Eff ND	Inf ND ND ND ND ND ATED PHENO Inf ND ND ND	JUN Eff ND ND ND ND OLIC COMPO JUN Eff ND ND ND	Inf ND	JUL Eff ND ND ND ND VC IL) 2009 JUL Eff ND	ND N	Eff ND	ND ND ND ND ND	Eff ND	ND ND ND ND ND ND ND ND ND	Eff ND	ND ND ND ND	ND ND NOV Eff ND	ND N	Eff ND ND ND ND DEC Eff ND ND ND ND ND DEC ND ND ND ND ND ND ND ND ND N
1 2 3 4 Average	ND N	EFF ND ND ND ND ND DAN EFF ND ND	ND N	EFF ND ND ND ND ND ND ND ND ND	ND N	EFF ND ND ND ND ND ND ND ND MAR EFF ND ND ND	ND N	EFF ND ND ND ND ND ND ND ND ND	ND N	MAY Eff ND ND ND CHLORIN, MAY Eff ND ND ND ND ND ND ND ND ND N	Inf ND ND ND ND ATED PHENC Inf ND	JUN EFF ND	Inf ND	JUL EFF ND ND ND ND SUL EFF ND	ND N	Eff ND AUG Eff ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	Eff ND	ND N	EFF ND ND ND ND ND OCT EFF ND ND ND ND ND ND ND ND ND	ND	ND ND ND NOV Eff ND	ND N	EFF ND ND ND ND DEC EFF ND ND ND ND ND ND ND ND ND
1 2 3 4 Average	ND N	EFF ND ND ND ND ND DAN EFF ND ND	ND N	EFF ND ND ND ND ND ND ND ND ND	ND N	EFF ND ND ND ND ND ND ND ND MAR EFF ND ND ND	ND N	EFF ND ND ND ND ND ND ND ND ND	ND N	MAY Eff ND ND ND CHLORIN, MAY Eff ND ND ND ND ND ND ND ND ND N	Inf ND	JUN EFF ND	Inf ND	JUL EFF ND ND ND ND SUL EFF ND	ND N	Eff ND AUG Eff ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	Eff ND	ND N	EFF ND ND ND ND ND OCT EFF ND ND ND ND ND ND ND ND ND	ND	ND ND ND NOV Eff ND	ND N	EFF ND ND ND ND DEC EFF ND ND ND ND ND ND ND ND ND
1 2 3 4 Average	ND N	Eff ND	ND N	EFF ND	ND N	EFF ND	ND N	EFF ND	ND N	MAY EFF ND ND ND ND CHLORIN, MAY EFF ND ND ND ND CHLORION CHLORION CHLORION	Inf ND ND ND ND ATED PHENC Inf ND	JUN EFF ND	Inf ND	JUL Eff ND ND ND ND STAND ND N	ND N	EFF ND	ND ND ND ND ND ND ND ND ND	Eff ND	ND N	EFF ND	ND	ND ND NOV EFF ND	ND N	Eff ND
1 2 3 4 Average Week 1 2 3 4 Average	ND N	EFF ND	ND N	EFF ND	ND N	EFF ND ND ND ND ND ND ND ND ND MAR EFF ND	ND N	EFF ND ND ND ND ND ND ND ND APR EFF ND ND ND ND ND APR APR	ND N	MAY EFF ND ND ND CHLORIN MAY EFF ND ND ND CHLORIN MAY AND ND N	Inf ND ND ND ND ND THE ND ND ND ATED PHENO ND	JUN EFF ND	Inf ND	JUL EFF ND	ND N	EFF ND ND ND ND ND ND ND ND AUG EFF ND	ND N	Eff ND	ND N	Eff ND ND ND ND ND ND ND ND ND OCT Eff ND	ND	ND N	ND N	EFF ND ND ND ND ND ND ND ND DEC EFF ND ND ND ND ND ND ND ND ND
1 2 3 4 Average Week 1 2 3 4 Average Week 1 2 3 4 Average	ND N	EFF ND	ND N	EFF ND ND ND ND ND ND ND ND FEB EFF ND	ND N	MAR EFF ND	ND N	EFF ND ND ND ND ND ND APR EFF ND ND ND ND ND ND ND ND APR EFF ND ND ND APR APR EFF ND ND ND	ND ND ND ND ND ND Inf ND	MAY EFF ND ND ND CHLORIN, MAY EFF ND ND ND CHLORIN, MAY EFF ND ND ND CHLORIN, MAY EFF ND	Inf ND ND ND ND THE PHENO Inf ND	JUN EFF ND	Inf ND	JUL EFF ND	ND N	EFF ND ND ND ND ND ND AUG EFF ND	ND ND ND Inf ND	Eff ND ND ND ND ND ND ND SEP Eff ND	ND N	EFF ND ND ND ND ND ND OCT EFF ND	ND N	ND ND NOV Eff ND	ND N	EFF ND ND ND ND ND ND DEC EFF ND ND ND ND DEC EFF ND ND ND ND ND ND ND ND ND
1 2 3 4 Average Week 1 2 3 4 Average Week 1 2 3 3 4 Average	Inf ND ND ND Inf ND	Eff ND	ND N	EFF ND	ND N	MAR EFF ND	ND N	EFF ND ND ND ND ND ND ND ND APR EFF ND	ND N	MAY EFF ND ND ND ND CHLORIN MAY EFF ND	Inf ND ND ND ND ND TED ND ATED PHENC ND	JUN EFF ND ND ND ND ND OLIC COMPO JUN EFF ND	Inf ND ND ND ND ND ND ND ND ND UNDS (ug,	JUL EFF ND	ND N	EFF ND ND ND ND ND ND ND AUG EFF ND	ND N	Eff ND ND ND ND ND ND ND ND ND SEP Eff ND	ND N	EFF ND ND ND ND ND OCT EFF ND	ND N	ND N	ND N	EFF ND ND ND ND ND ND ND DEC EFF ND ND ND ND ND ND ND ND ND
1 2 3 4 Average Week 1 2 3 4 Average Week 1 2 3 4 Average	ND N	EFF ND	ND N	EFF ND ND ND ND ND ND ND ND FEB EFF ND	ND N	MAR EFF ND	ND N	EFF ND ND ND ND ND ND APR EFF ND ND ND ND ND ND ND ND APR EFF ND ND ND APR APR APR BO ND ND ND	ND ND ND ND ND ND Inf ND	MAY EFF ND ND ND CHLORIN, MAY EFF ND ND ND CHLORIN, MAY EFF ND ND ND CHLORIN, MAY EFF ND	Inf ND ND ND ND THE PHENO Inf ND	JUN EFF ND	Inf ND	JUL EFF ND	ND N	EFF ND ND ND ND ND ND AUG EFF ND	ND ND ND Inf ND	Eff ND ND ND ND ND ND ND SEP Eff ND	ND N	EFF ND ND ND ND ND ND OCT EFF ND	ND N	ND ND NOV Eff ND	ND N	EFF ND ND ND ND ND ND DEC EFF ND ND ND ND DEC EFF ND ND ND ND ND ND ND ND ND

										NON-CHLOR	INATED PH	ENOLIC CO	MPOUNDS (ι	ıg/L) 2005	5									
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff																						
1	7.5	<i>c</i> 1	11.3	8.1	4.3	2.9	14.6	13.7	17.0	11 6	16.3	11.5	17.3	11.2	9.4	5.5	13.4	8.3	13.3	939	17 1	12 1	19.7	15.6
2	7.5 9.1	6.1 5.9	10.9 15.2	6.3 10.2	11.2 14.6	9.6 12.6	13.1 14.9	12.5 13.5	17.9 20.4	11.6 13.5	15 17.2	13.1 13.6	18.7 17.8	12.7 11	13.6 15.5	10 8.4	13.1 9.4	13.4 12.3	14.3 11.6	11 11.4	17.1 14.7	13.1 13.7	15.3 14.1	10.7 8.3
4	17.3	12.2	7.9	5.6	16.1	10.8	16.7	10.2	17.7	9.3	15.5	10.6	7.9	11.6	8.2	8.4	15.5	12.5	19.5	11.9	16.2	12	16.8	10.8
Average	11.3	8.1	11.3	7.6	11.6	9	14.8	12.5	18.7	11.5	16	12.2	15.4	11.6	11.7	8.1	12.9	11.6	14.7	11	16	12.9	16.5	11.4
											INATED PH		MPOUNDS (ι		5									
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff																						
1	15.8	12.4	14.1	12.9	16.5	15.9	27.3	19	22	10.5	14.6	13.2	26.9	13.5	20.3	13.4	21.3	15.2	14.9	10.4	16.3	7.7	19.3	13.6
2	17.4 12.2	12.4 10.7	14.3 15	10.7 12.1	16.4 31.5	13.6 25.6	22.1 26.7	15.6 18.8	40.5 23.5	21.8 17.7	21.9 21.6	16.3 17.3	16.4 20.9	13.1 13.5	17 22.5	12.7 15.6	11.7 11.6	10.9 9.9	19.3 17.1	13.2 13.4	19.5 16.9	13 11.5	18.2 17.6	11.9 13.7
4	12.6	11.6	15.1	10.4	31.3	23.0	21.6	18	19.9	12.4	14.7	14.4	18.2	11.9	21.8	11.4	11.0	5.5	8.2	10	21.3	14.9	26.2	22.5
Average	14.5	11.8	14.6	11.5	21.5	18.4	24.4	17.9	26.5	15.6	18.2	15.3	20.6	13.0	20.4	13.3	14.9	12.0	14.9	11.8	18.5	11.8	20.3	15.4
										NON-CHLOR	INATED PH	ENOLIC CO	MPOUNDS (ι	ug/L) 2007	7									
	_	JAN	_	FEB	_	MAR	_	APR	_	MAY	_	JUN	_	JUL	_	AUG	_	SEP	_	OCT	_	NOV	_	DEC
Week	Inf	Eff																						
1	18.8	15.1	45.7	12.7	16.2	12.9	19.9	17.5	20.3	15.7	16	13	14.3	9.3	16	10	16.2	9.4	19.4	8.7	18.5	12.3	14.2	8.8
2	16.9	15.4 20.1	15.7 29.9	12.7 15.2	16.4 17.8	14.5 13.4	17.9 12.8	16.4 11.3	21.1 20	12.5 12.6	20.2 16.8	13.2 9.3	12.4 16.9	10.2 12.4	14.6 16.3	8 7.9	14.7 15.4	8.7 8.9	17.7 13.7	10.5 8.1	21.6 20.3	14.5 13.3	15.5 16.4	11.6 12.2
4	19.6 11.1	16.7	16.3	13.5	16.1	13.4	19.6	14.2	16.6	11.1	10.0	9.3	12.7	7.5	12	6.6	15.4	17.6	17.9	10.5	17.1	12.3	16.4	12.2
Average	16.6	16.8	20.6	13.8	16.6	13.6	17.6	14.9	19.5	13.0	17.7	11.8	14.1	9.9	14.7	8.1	15.4	11.2	17.2	9.5	19.4	13.0	15.4	10.9
											INATED PH		MPOUNDS (ι		В									
		JAN		FEB		MAR		APR		MAY		JUN		JUL		AUG		SEP		OCT		NOV		DEC
Week	Inf	Eff																						
1 2	18.8 16.8	15.0 10.7	17.4 15.4	11.1 9.5	18.9 17.9	13.3 13.7	19.8 23.0	11.6 16.7	17.8	15.4	18.4 21.9	12.0 15.3	16.8 21.8	11.5 12.8	14.6 18.7	11.2 13.8	14.3 19.4	9.9	15.2 11.2	12.3 9.1	16.7	11.8	15.2 16.3	13.1 16.4
3	18.9	13.0	17.2	13.5	20.0	11.3	22.6	15.4	19.5	17.4	27.0	10.1	16.7	8.3	16.5	14.4	12.2	11.5 10.4	14.3	10.3	14.2	12.5	4.8	6.1
4	17.7	9.4	17.4	13.0	16.4	12.9	21.1	17.7	19.6	13.3	22.4	12.1	13.6	9.7	19.3	11.3	11.2	8.9	14.4	12.9	16.5	15.0	14.9	13.7
Average	18.1	12.0	16.9	11.8	18.3	12.8	21.6	15.4	19.0	15.4	22.4	12.4	17.2	10.6	17.3	12.7	14.3	10.2	13.8	11.2	15.8	13.1	12.8	12.3
											INATED PH		MPOUNDS (9									
Us als	T C	JAN	T C	FEB	T C	MAR	T C	APR	T C	MAY	T - C	JUN	T C	JUL	T - C	AUG	T C	SEP	T C	OCT	T C	NOV	T C	DEC
Week 1	Inf 17.2	Eff 14.3	Inf 15.6	Eff 14.3	Inf	Eff	Inf 18.5	Eff 17.4	Inf 17.6	Eff 16.2	Inf 19.2	Eff 13.7	Inf 22.0	Eff 15.0	Inf 19.2	Eff 14.3	Inf	Eff	Inf 22.5	Eff 18.2	Inf 16.6	Eff 13.5	Inf 16.4	Eff 12.7
2	13.2	11.8	15.7	12.0	14.5	13.4	16.2	17.4	19.4	13.8	18.2	15.7	19.1	18.3	26.7	17.4	22.0	12.7	21.4	13.1	22.6	14.3	15.0	8.6
3	15.0	13.1	16.0	12.6	17.7	15.3	13.5	12.8	20.3	17.5	18.0	13.4	20.4	14.5	19.4	12.0	17.1	11.7	22.6	17.1	20.6	13.8	19.1	13.3
4	17.4	17.5	17.3	13.8	18.6	16.8	19.6	16.0	16.0	14.9	20.5	10.2	20.4	14.1	19.4	14.0	21.4	11.5	23.0	15.0	23.1	19.1	17.9	16.4
Average	15.7	14.2	16.2	13.2	16.9	15.2	17.0	15.9	18.3	15.6	19.0	13.2	20.5	15.5	21.2	14.4	20.2	12.0	22.4	15.9	20.7	15.2	17.1	12.8
											INATED PH		MPOUNDS (ι		9									
1,11-	T= C	JAN	T. C	FEB	T C	MAR	T C	APR	T C	MAY	T C	JUN	T C	JUL	T C	AUG	To C	SEP	To C	OCT	Tr. C	NOV	To C	DEC
Week 1	Inf 20.0	Eff 16.4	Inf 19.2	Eff 15.6	Inf 16.1	Eff 14.5	Inf 18.8	Eff 16.2	Inf 21.5	Eff 16.5	Inf 22.4	Eff 18.0	Inf 21.7	Eff 19.7	Inf 23.4	Eff 19.6	Inf 27.5	Eff 19.0	Inf 21.0	Eff 18.6	Inf 28.3	Eff 13.4	Inf	Eff
2	13.4	16.4	19.2	14.6	14.2	14.5	15.4	12.5	16.1	10.3	16.7	17.5	21.7 17.4	16.8	23.4 14.9	19.6	20.0	19.0	15.3	16.7	18.3	12.5	20.9	20.1
3	5.9	5.5	17.9	15.6	16.4	13.8	15.4	15.9	17.0	15.2	16.5	15.1	19.7	14.7	18.1	16.1	23.8	15.6	12.6	13.7	18.3	14.1	22.4	16.3
4	13.2	12.8		23.0	18.6	15.0	15.1	16.8	17.5	14.3	20.5		12.9	9.1	16.7	6.4	17.0	17.0	12.7	14.6	22.0	17.0	5.1	6.7
Average	13.1	11.8	17.3	15.3	16.3	13.9	16.2	15.4	18.0	14.1	18.5	16.9	17.9	15.1	18.3	13.7	22.1	17.5	15.4	15.9	21.7	14.3	16.1	14.4

